1 VFR flights shall not be flown over the congested areas of cities at a height less than
A the highest obstacle.
B 500 ft above the highest obstacle.
C 2000 ft above the highest obstacle within a radius of 600 ft from the aircraft.
D 1000 ft above the highest obstacle within a radius of 600 m from the aircraft.
2 (For this question use annex A)
The planned flight is over a distance of 440 NM
Based on the wind charts at altitude the following components are found:
FL50: -30kt; FL100: -50kt; FL180: -70kt
The Operations Manual in appendix details the aircraft's performances.
Which of the following flight levels (FL) gives the best range performance:
A FL 050
B Either FL 050 or FL 100
C FL 180
D FL 100
3 Given: True course (TC) 017°, W/V $340^{\circ} / 30 \mathrm{kt}$, True air speed (TAS) 420 kt Find: Wind correction angle (WCA) and ground speed (GS)

A WCA - 2°, GS 426 kt
B WCA $+2^{\circ}$, GS 416 kt
C WCA -2°, GS 396 kt
D WCA $+2^{\circ}$, GS 396 kt
4 The fuel burn off is $200 \mathrm{~kg} / \mathrm{h}$ with a relative fuel density of 0,8 . If the relative density is 0,75 , the fuel burn will be:

A $200 \mathrm{~kg} / \mathrm{h}$
B $213 \mathrm{~kg} / \mathrm{h}$
C $188 \mathrm{~kg} / \mathrm{h}$
D $267 \mathrm{~kg} / \mathrm{h}$
5 (For this question use annex B or Flight Planning Manual MRJT 1 Figure 4.3.1C) For a flight of 2000 ground nautical miles, cruising at 30000 ft , within the limits of the data given, a headwind component of 25 kt will affect the trip time by approximately:
A $+5.3 \%$
B $+7.6 \%$
C -3.6%
D +2.3\%
6 At a navigational checkpoint the remaining usable fuel in tanks is 60 US gallons. The alternate fuel is 12 US gallons. According to the flight plan the remaining flight time is 1 h 35 min . Calculate the highest rate of consumption possible for the rest of the trip.
A 33.0 US gallons/hour
B 30.3 US gallons/hour
C 21.3 US gallons/hour
D 37.9 US gallons/hour

7 In the ATC flight plan Item 15 (Cruising speed), when not expressed as a Mach number, cruising speed is expressed as:

A Groundspeed
B CAS
C IAS
D TAS
8 A "current flight plan" is a:
A flight plan with the correct time of departure.
B flight plan in the course of which radio communication should be practised between aeroplane and ATC.
C filed flight plan with amendments and clearance included.
D filed flight plan.
9 If your destination airport has no ICAO indicator, in the appropriate box of your ATC flight plan, you write:
A XXXX
B IIII
C ZZZZ
D AAAA
10 The maximum permissible take-off mass of an aircraft for the L wake turbulence category on an ATC flight plan is:

A 10000 kg
B 5700 kg
C 2700 kg
D 7000 kg
11 During an IFR flight TAS and time appear to deviate from the data in the ATC flight plan. The minimum deviations, that should be reported to ATC in order to conform to PANS-RAC, are:

A TAS 5\% and time 3 minutes.
B TAS 3\% and time 3 minutes.
C TAS 5 kt and time 5 minutes.
D TAS 10 kt and time 2 minutes.
12 An executive pilot is to carry out a flight to a French aerodrome, spend the night there and return the next day. Where will he find the information concerning parking and landing fees ?

A in the AGA chapter of the French Aeronautical Information Publication (AIP)
B in the FAL section of the French Aeronautical Information Publication (AIP)
C by telephoning the aerodrome's local chamber of commerce, this type of information not being published
D in the GEN chapter of the French Aeronautical Information Publication (AIP)

13 The still air distance in the climb is 189 Nautical Air Miles (NAM) and time 30 minutes. What ground distance would be covered in a 30 kt head wind?

A 174 NM
B 203 NM
C 188 NM
D 193 NM
14 (For this question use annex C)
Which best describes be maximum intensity of icing, if any, at FL150 in the vicinity of BUCHAREST ($45^{\circ} \mathrm{N} 026^{\circ} \mathrm{E}$) ?

A Severe
B Nil
C Moderate
D Light
15 (For this question use annex D)
Which of the following flight levels, if any, is forecast to be clear of significant cloud, icing and CAT along the marked route from SHANNON ($53^{\circ} \mathrm{N} 10^{\circ} \mathrm{W}$) to BERLIN ($53^{\circ} \mathrm{N} 13^{\circ} \mathrm{E}$) ?
A FL250
B FL 210
C FL290
D None
16 A METAR reads: SA1430 35002KY 7000 SKC 21/03 QI024 =
Which of the following information is contained in this METAR ?
A temperature/dewpoint
B runway in use
C day/month
D period of validity
17 (For this question use annex E)
What lowest cloud conditions (oktas/ft) are forecast for JOHANNESBURG/JAN SMUTS at 0300 UTC?

A 3 to 4 at 400
B 5 to 7 at 800
C 3 to 4 at 800
D 5 to 7 at 400
18 (For this question use annex F or SID chart Paris Charles de Gaulle 20-3)
Planning an IFR-flight from Paris Charles de Gaulle to London. SID is ABB 8A.
Assume Variation 3° W, TAS 430 kts , W/V 280/40 and distance to top of climb 50NM
Determine the magnetic course, ground speed and wind correction angle from top of climb to ABB 116.6.

A MC 169°, GS 450 kt , WCA $+4^{\circ}$
B MC 349°, GS 414 kt , WCA $+5^{\circ}$
C MC 169°, GS 414 kt , WCA $+5^{\circ}$
D MC 349°, GS 414 kt , WCA - 5°

19 An airway is marked 5000 2900a. The notation 5000 is the:
A base of the airway (AGL)
B minimum holding altitude (MHA)
C maximum authorised altitude (MAA)
D minimum enroute altitude (MEA)
20 An airway is marked 3500T 2100 a. This indicates that:
A the minimum obstruction clearance altitude (MOCA) is 3500 ft
B the minimum enroute altitude (MEA) is 3500 ft
C the airway base is 3500 ft MSL
D the airway is a low level link route $2100 \mathrm{ft}-3500 \mathrm{ft}$ MSL
21 From which of the following would you expect to find information regarding known short unserviceability of VOR, TACAN, and NDB ?
A SIGMET
B ATCC broadcasts
C NOTAM
D AIP
22 You must fly IFR on an airway orientated 135° magnetic with a MSA at 7800 ft . Knowing the QNH is 1025 hPa and the temperature is ISA $+10^{\circ}$, the minimum flight level you must fly at is:

A 70
B 75
C 80
D 90
23 The purpose of the decision point procedure is:
A to reduce the landing weight and thus reduce the structural stress on the aircraft.
B to reduce the minimum required fuel and therefore be able to increase the traffic load.
C to increase the amount of extra fuel.
D to increase the safety of the flight.
24 Given:
Distance from departure to destination 500 NM
True track 090
W/V 090/20
TAS $\quad 150 \mathrm{kt}$
What is the distance and time of the PET from the departure point?
A Distance: 382 NM Time: 176min
B Distance: 250 NM
Time: 88 min
C Distance: 217 NM
D Distance: 283 NM
Time: 100 min
Time: 131 min

25 (For this question use annex G or Flight Planning Manual MRJT 1 Figure 4.3.6)
Given: twin jet aeroplane, Dry operating mass 35500 kg , Traffic load 14500 kg , Final reserve fuel 1200 kg , Distance to alternate 95 NM, Tailwind component 10 kt
Find: Fuel required and trip time to alternate with simplified flight planning (ALTERNATE PLANNING)

A $800 \mathrm{~kg}, 24 \mathrm{~min}$
B $800 \mathrm{~kg}, 0.4 \mathrm{hr}$
C $1000 \mathrm{~kg}, 24 \mathrm{~min}$
D $1000 \mathrm{~kg}, 40 \mathrm{~min}$
26 "Integrated range" curves or tables are presented in the Aeroplane Operations Manuals. Their purpose is

A to determine the still air distance for a wind components varying with altitude.
B to determine the optimum speed considering the fuel cost as well as the time related cost of the aeroplane.
C to determine the fuel consumption for a certain still air distance considering the decreasing fuel flow with decreasing mass.
D to determine the flight time for a certain leg under consideration of temperature deviations.

27 (For this question use annex H)
Finish the ENDURANCE/FUEL CALCULATION and determine ATC ENDURANCE for a twin jet aeroplane, with the help of the table provided. Contingency is 5% of the planned trip fuel and fuel flow for extra fuel is $2400 \mathrm{~kg} / \mathrm{h}$.
A ATC ENDURANCE: 04:12
B ATC ENDURANCE: 03:37
C ATC ENDURANCE: 03:52
D ATC ENDURANCE: 04:07

ANNEX A

Flight Level	40	80	120	160	200
TAS (knots)	190	198	204	212	220
Hourly fuel flow (l/hr)	210	202	182	170	156

Edition November $99 J \boldsymbol{J A A}$ © 2002

FLIGHT PERFORMANCE AND PLANNING (3)

FLIGHT PLANNING AND MONITORING

ANNEX B

CIVIL AVIATION AUTHORITY
DATA SHEET MRJT 1

Figure 4.3.1 C SIMPLIFIED FLIGHT PLANNING

LONG RANGE CRUISE

Edition November 99 JAA © 2002

ANNEX C

ANNEX D

FLIGHT PERFORMANCE AND PLANNING (3)

FLIGHT PLANNING AND MONITORING
ANNEX E

METARITAF LIST

```
PNRIS / CEARLES-DE-GAULLE
```

LPPG/CDG
SA1330 121330227004 KT 9999 SCTO11 BKN050 09/08 Q1001 NOSIG:
FC1100x 1208002120918 30005RE 3500 ER BKN003 BECNG 09116000
SCTO11 SCTO50 BECMG 11139999 SCT020 BECMG TZMPO 1317
8000 -SERA SCT025TCU BNN030 T08/12Z T09/152.
FT1000 121000212181227008 KT 9999 BKNO25 BECNG 182120005 KT SCT0 30
BECMG 21246000 BECNG 000220008 KT 2000 BR BRNOO5 TEMPO 0208
20004 KT 0500 BCPG OVCe01 BECNG 0810 18012KT 9999 SCT012
BCMG 1012 SCT020.
BORDEAUK / MERIGRAC
2!BD/BOD
SA1330 1213302 21005KT 9000 FEW030TCU FEW033CB SCT040 BKN100 09/08
Q1005 TEMPO 25015625 KT 3000 TSRA SCT005 BRN015CB-
FC1100r 121100212122128010 KT 9999 -RA SCT020 FEW025CB SCT040
TRNPO $121825015 G 25 K T \quad 6000$ SKRA SCT008 SCT020CB BRN033 PROB30
TENPO $121828020 G 30 \mathrm{RT} 3000$ TSRA SCTO05 BRNO $15 C B$ BRN030 BECMG
182122004 KT 8000 NSW YEW006 BRN030.
FT1000 121000212181230010 KT 9999 SCT020 FEW025CB BRN040
BECMG 182222004 KT 8000 PEW 006 BKN030 BECMG 0306 24005RT 6000
SCT007 SCT015 BKNO90 BECHC 1012 -RA.
LYON / SATOLAS
LFLL/LYS
SA1330 121330214007 KT 9000 -TSRA FEW020CB SCT033TCU BKN046 09/07
Q1003 NOSIG:
FC1100r 1211002121221 VRB03KI 9999 FEW010 SCT020 BRN040 EECMG 1821
33006 KT TEMPO 1221 VRE15G20KT 4000 SHRA SCT008 BNN015=
PT1000 $121000212181233004 \pi \approx 9999$ SCT025 BRN060 BECMG 2224 VRB02RT
8000 SCTO10 SCTO20 BECMG 02041500 BR BRNOO3 TEMPO 04070800 FC
OVCOO2 BECMG 0810 33006KT 9999 SCTO15 BKN030.
BASEL / MULHOUSE
LFSB/BSL
SA1330 121330223008 XT 9999 -RA FEW020 SCT030 BRON066 06/05 Q1001
NOSIG.
FC1100r 1211002121221 18005KT 9000 -RA FEW015 BKN030 BKND60
TEMPO 1216 NSH BECNG 15179999 FEWO30 BRONO40 BKNOBO
TEMPO 1621 -SERRA.
DUBAI
OMDE/DXB
FT1000 12121233015 KT 9999 SCT030 BRN090 TENPO 12095000 SERA PROB40
TEMPO 1224 VRB40KT $10 G 0$ TSSE SCT025CB BECNG 1618 05010KT
BECNG 0608 33013G23RT.
JOEANESSBURG/JAN SMUTS
FANS/JNB
FT0900 120900212121236010 KT 9999 FEN030CB FEW035 PROB40 TEMPO 1318
VRB15KT 3000 TSRA SCT030CB BKN080 FM2 2000 03005KT CAVOK
BECRC 0204 SCT008 SCT100 PROB30 03053000 BCPG BKNOO4
FM0800 34012KT 9999 SCT025 T25/12Z T15/032 T27/12Z=
TUNIS / CARTHAGE
DTTA/TUN

ANNEX F

ANNEX G

CIVIL AVIATION AUTHORITY
DATA SHEET
FUEL PLANNING

3.3 Altemate Planning (Fig. 4.3.6)

The fuel and time figures extracted from this chart include the following:

- Missed approach
o Climb to cruise altitude
o Cruise at LRC
o Descent and straight on approach.
Method of use is similar to previous graphs.
For distances greater than 500 NM use the LRC Simplffied Hight Planning Charts.

Figure 4.3.6
SIMPLIFIED FLICHT PLANNING

ALTERNATE PLANNING LONG RANGE CRUISE

ANNEX H

ENDURANCE/FUEL CALCULATION

	Fuel (kg)	Time (hh:mm)
Trip Fuel	5800	$02: 32$
Contingency Fuel		
Alternate Fuel	1800	$00: 42$
Final Reserve Fuel	1325	
Minimum T/O-Fuel		
Extra Fuel	200	
Actual T/O-Fuel	10000	
Taxi FUEL		
Ramp Fuel		

1. 1000 ft - an ICAO regulation, see Air Law

Answer (d)
2. There are 2 ways of doing this. Either calculate Specific Fuel Consumption (SFC), which is given by Fuel Flow/ground speed (SFC = Kgs of fuel used per ground nm ; therefore, the lower the figure the better), or calculate the total fuel required for this 440 nm navigation leg...l'll use SFC....

Now, they have been awkward.....the question refers to FLs 50/100/180 and the cruise data is given at FLs 40/80/120/160/200. Also, the question gives fuel flow as Litres/hour rather than $\mathrm{kg} / \mathrm{hr}$ but we can still use it to find a measure of efficiency - Litres of fuel used per ground nm .

We need to interpolate and expand ANNEX A to find the data at Flight Levels 50/100/180 and then divide fuel flow by groundspeed to find the lowest SFC.

FL	40	$\mathbf{5 0}$	80	$\mathbf{1 0 0}$	120	160	$\mathbf{1 8 0}$	200
TAS	190	$\mathbf{1 9 2}$	198	$\mathbf{2 0 1}$	204	212	$\mathbf{2 1 6}$	220
Wind		$\mathbf{- 3 0}$		-50			$\mathbf{- 7 0}$	
GS		$\mathbf{1 6 2}$		$\mathbf{1 5 1}$			$\mathbf{1 4 6}$	
L/hr	210	$\mathbf{2 0 8}$	202	$\mathbf{1 9 2}$	182	170	$\mathbf{1 6 3}$	156
SFC		$\mathbf{1 . 2 8 3}$		$\mathbf{1 . 2 7 1}$			$\mathbf{1 . 1 1 6}$	

The best range performance is at FL180 where the SFC is $1.116 \mathrm{~L} / \mathrm{NGM}$
3. This is solved on the Nav Computer, WCA is another term for drift except that, while drift is usually expressed as port and starboard or left and right, the WCA uses + and -. The mnemonic for conversion is Port Plus.

On the CRP5 or similar use the wind face and the high speed scale. Rotate the inner scale to put 340° at the top and mark the wind cross 30kt down from the centre ring. Place the TAS, 420kt under the centre ring. Put the course (track) of 017° initially at the top, read an initial drift of 2.5° right. Rotate the inner scale 2.5° to the right to lay off the drift then, finally, read a heading of $015^{\circ} \mathrm{T}$, a drift of 2° right and a groundspeed of 396 kt . The WCA is -2°,

Answer (c)
4. Fuel burn of $200 \mathrm{~kg} / \mathrm{hr}$ remains $200 \mathrm{~kg} / \mathrm{hr}$ whatever the SG , that only affects the volume of fuel burnt per hour

Answer (a)
5. Use either the Annex or CAP 697 page 30 which has a better print quality.

Enter at 2000 NGM \qquad ZERO wind trip time...... 4.830hrs
25kt head wind trip time.. 5.150 hrs
An increase of...... 0.330hrs
As a percentage of the still air time: $+\frac{0.330}{4.830} \times 100=+6.85 \%$
Answer (b)

FLIGHT PERFORMANCE AND PLANNING (3) FLIGHT PLANNING AND MONITORING

6. This question apparently ignores Final Reserve and Contingency and assumes all the usable fuel will be burnt in the rest of the trip. This is clearly a poor way to operate aircraft but, with no other information, we have to follow the assumption.

Remaining Trip fuel $=60-12=48$ US gals
Remaining Trip time $=1.583$ hrs
Highest fuel consumption rate $=\frac{48.0}{1.583}=30.3$ US gals $/$ hour
Answer (b)
7. JEPP Manual Air Traffic Control Section page 438. TAS Answer (d)
8. PANS RAC 4444 states: The current flight plan is "The Flight Plan, including any changes, if any, brought about by subsequent clearances."

Answer (c)
9. JEPP Manual Air Traffic Control Section page 438, ITEM 16. Answer (c)
10. JEPP Manual Air Traffic Control Section page 435, ITEM 9. Answer (d)
11. JEPP Manual Air Traffic Control Section page 438, ITEM 15 (3) Change of Speed or Level gives a clue -5% TAS.... 3 minutes is also a requirement.
12. AGA

Answer (a)
13. Climb distance 189 NAM - but you are in a headwind of 30 kts for 30 minutes - you get blown back 15nms - ground distance covered 189 - $15=174$ NGM

Answer (a)
14. The quality of this Annex is very poor. It is sort of possible to make out the LAT and LONG, use London as a starter..... Bucharest is the B 5.5 cm from the bottom, 4.5 cm from the left edge! Icing over Bucharest at FL150: the detail is just above the B, remember the icing symbol has up to 3 verticals light / moderate / severe. So, from CHART base (FL100) to FL200 there is MODERATE ICING forecast.

Answer (c)
15. Annex D. Luckily the route SHANNON to BERLIN is drawn in. There are 2 areas of weather affecting this route - CAT AREA 2 - Moderate CAT FL270FL400, and a Frontal System lying over England with MOD Icing and CAT FL100-FL140 ISOL EMBD CB FL100-FL220.

There seems to be a clear area FL220-FL270.
Answer (a)
16.SKC $21 / 03 \ldots$..Sky Clear Temperature $21^{\circ} \mathrm{C}$ Dew Point $3^{\circ} \mathrm{C}$...

Answer (a)

FLIGHT PERFORMANCE AND PLANNING (3) FLIGHT PLANNING AND MONITORING

17. The question asks for the lowest cloud conditions forecast for 0300 UTC. Look at all the TEMPOs and PROBs.....third line....PROB30 03053000
BKN004 FM0800..... The lowest cloud is 5 to 7 OKTAS at 400ft
Answer (d)
18. The Annex is offered, but if you have your JEPP Manual, use the PARIS CDG Chart 20-3 in that. To answer the question you need to know which segment of the departure you are in. Follow the ABB 8A departure track adding up the track miles as you go. TOC is at 50 nm - this is after you get to N49 13.7 E002 12.8, the magnetic track (course) is 349° inbound to ABB VOR. So it must be either (B) or (D). The fact that the wind is coming from the left means you are being blown to the right, right drift, and have a negative WCA. It must be (D). You can also use the nav computer to find the exact values.

Answer (d)
19. JEPP Manual, Enroute chart legend page 57 - the blue pages

Answer (d)
20. JEPP Manual, Enroute chart legend page 57 - the blue pages

Answer (a)
21. Short term unserviceabilities - NOTAMs.

Answer (c)
22.

1013
1025

The diagram shows the ISA Pressure Altitude of 7440 ft corresponds to an altitude of 7800 ft . There is also a temperature error to take account of, 4% of the difference between the height you are at and the datum for each 10° of ISA deviation, $4 \% \times 7440=298 \mathrm{ft}$, and this is subtracted from 7440 ft to show an indicated 7142 ft corresponds to an ISA pressure altitude of 7440 ft , in high temperatures your altimeter under reads.

It might be worth noting that the temperature error correction is small, and is unlikely to affect the outcome of a calculation like this.

For an ICAO Semi-circular on $135^{\circ} \mathrm{M}$, you need an ODD level, (levels shown on any en-route chart), FL70 would be too low, the next one up is FL90

Answer (d)
23. The Decision Point procedure allows a substantial reduction in contingency fuel, so you can load additional pax/bags/freight.

Answer (b)
24.

Distance to PET $=\frac{\mathrm{DH}}{\mathrm{O}+\mathrm{H}}=\frac{500 \times 170}{130+170}=283 \mathrm{~nm}$
Time to PET $=\frac{\text { Distance }}{\text { Speed }}=\frac{283}{130}=2.179 \mathrm{hrs}=131$ minutes
Answer (d)
25. Use Annex G, or CAP 697 page 39.

First you need to calculate
LANDING WEIGHT = Dry Operating Mass + Traffic Load + Final Reserve
$=35500+14500+1200=51200 \mathrm{~kg}$
Now to the chart and find $1000 \mathrm{~kg}, 0.4 \mathrm{hr}$ (24 minutes)
Answer (c)
26. Integrated Range tables (CAP 697 pages $46 \ldots .$.) allow fuel consumption for a given nautical air mile distance; the tables consider decreasing aeroplane mass.

Answer (c)
27. We think the Annex to this question is flawed, it shows final reserve fuel of 1800 kg and a time of 42 minutes with an apparently useless number 1325 floating below the bottom line.

We think the fuel figures in the Annex have slipped a line and it should actually look like this:

	Fuel (kg)	Time (hh:mm)
Trip Fuel	5800	$2: 32$
Contingency Fuel	1800	$0: 42$
Alternate Fuel	1325	
Final Reserve Fuel		
Minimum T/O Fuel Extra Fuel	200	
Actual T/O Fuel Taxi Fuel	10000	
Ramp Fuel		

The solution is now:
Complete the table:
Contingency fuel is 5% of TRIP $=290 \mathrm{~kg}$, no time is allocated.
Enter the time for Final Reserve fuel for a jet, 30 mins

Insert these figures in the table

	Fuel (kg)	Time (hh:mm)
Trip Fuel	5800	$2: 32$
Contingency Fuel	290	
Alternate Fuel	1800	$0: 42$
Final Reserve Fuel	1325	$0: 30$
Minimum T/O Fuel		
Extra Fuel		
Actual T/O Fuel		
Taxi Fuel	200	
Ramp Fuel	10000	

Add the top line to find the
Minimum T/O Fuel $=5800+290+1800+1325=9215 \mathrm{kgs}$
Contingency 290 kgs @ TRIP Fuel flow ($2292 \mathrm{kgs} / \mathrm{hr}$) $=7.6 \mathrm{mins}$

$$
(5800 / 2.530=2292 \mathrm{kgs} / \mathrm{hr})
$$

Work the actual T/O fuel back from the ramp fuel
Actual T/O Fuel $=$ Ramp Fuel - Taxy Fuel $=9800 \mathrm{~kg}$
Therefore the "Extra Fuel" = 9800-9215 = 585 kgs
585 kgs @ the given $2400 \mathrm{kgs} / \mathrm{hr}=0.244 \mathrm{hrs}=14.6 \mathrm{mins}$

	Fuel (kg)	Time (hh:mm)
Trip Fuel	5800	$2: 32$
Contingency Fuel	290	$0: 07.6$
Alternate Fuel	1800	$0: 42$
Final Reserve Fuel	1325	$0: 30$
Minimum T/O Fuel	9215	
Extra Fuel	585	$0: 14.6$
Actual T/O Fuel	9800	
Taxi Fuel	200	
Ramp Fuel	10000	

So, TOTAL ENDURANCE $=2: 32+0: 07.6+0: 42+0: 30+0: 14.6=4: 06.2$, Answer (d)

