Skip to main content

Life Cycle of Pathogenic Protists: Trypanosoma cruzi

  • Chapter
  • First Online:
Lifecycles of Pathogenic Protists in Humans

Part of the book series: Microbiology Monographs ((MICROMONO,volume 35))

Abstract

Trypanosoma cruzi is the agent of Chagas disease with a high prevalence in Latin America. This protozoan presents a complex life cycle in the invertebrate (hematophagous triatominae) and the vertebrate hosts. Here we review the most relevant information on essential aspects of maintaining the parasite in vitro (axenic medium and cell cultures) and mammals, describing the most appropriate animal models. The diversity of the parasite is discussed based on biochemical and molecular information. Particular emphasis is given to the structural organization of the various developmental stages of the parasite, putting together morphological, biochemical, and molecular data on structures such as (a) the plasma membrane-cell surface complex, (b) the flagellum (including flagellar membrane, axoneme, paraflagellar rod and adhesion of the flagellum to the cell body), and other structures such as (c) the kinetoplast-mitochondrion complex, (d) the sub-pellicular and cytoplasmic microtubules, (e) endoplasmic reticulum-Golgi complex system, (f) contractile vacuole, (g) acidocalcisomes, (h) the kinetoplast-mitochondrion complex, (i) glycosomes, (j) lipid bodies, (k) P- bodies, (l) the endocytic pathway, (m) the exocytic pathway, including the release of microvesicles and exosomes by the parasite, and (n) the nucleus. Finally, we also analyze the basic information on the process of interaction of T. cruzi with host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcantara CL, Vidal JC, De Souza W, Cunha-E-Silva NL (2014) The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes. J Cell Sci 127(Pt 10):2227–2237

    CAS  PubMed  Google Scholar 

  • Alcantara C, Vidal J, De Souza W, Cunha N (2017) The cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes disassembles during cell division. J Cell Sci 130(1):164–176

    PubMed  Google Scholar 

  • Allen R, Naitoh Y (2002) Osmoregulation and contractile vacuoles of protozoa. Int Rev Cytol. 215:351–394

    Article  CAS  PubMed  Google Scholar 

  • Allison H, O’reilly A, Sternberg J, Field MC (2014) An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. Microb Cell 1(10):325–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsford S, Horn D (2004) Trypanosomatid histones. Mol Microbiol 2:365–372

    Article  CAS  Google Scholar 

  • Alves M, Colli W (2007) Trypanosoma cruzi: adhesion to the host cell and intracellular survival. IUBMB Life 59:274–279

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Abuin G, Kuwajima V, Colli W (1986) Partial inhibition of trypomastigote entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi. Mol Biochem Parasitol 21:75–82

    Article  CAS  PubMed  Google Scholar 

  • Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, De Souza W, Azambuja P, Gonzalez MS (2007) Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol. 116(1):44–52. https://doi.org/10.1016/j.exppara.2006.11.012

    Article  CAS  PubMed  Google Scholar 

  • Andersson B (2011) The Trypanosoma cruzi genome; conserved core genes and extremely variable surface molecule families. Res Microbiol 162(6):619–625

    Article  CAS  PubMed  Google Scholar 

  • Andrade L, Machado C, Chiari E, Pena S, Macedo A (1999) Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol 100(2):163–172. https://doi.org/10.1016/s0166-6851(99)90035-x

    Article  CAS  PubMed  Google Scholar 

  • Araripe J, Ramos F, Cunha E, Silva N, Urmenyi T, Silva R, Leite Fontes C, Da Silveira J, Rondinelli E (2005) Characterization of a RAB5 homologue in Trypanosoma cruzi. Biochem Biophys Res Commun 329(2):638–645

    Article  CAS  PubMed  Google Scholar 

  • Araújo Jorge T, Barbosa H, Moreira A, De Souza W, Meirelles MN (1986) The interaction of myotropic and macrophagotropic strains of Trypanosoma cruzi with myoblasts and fibers of skeletal muscle. Z Parasitenkd. 72(5):577–584. https://doi.org/10.1007/BF00925477

    Article  PubMed  Google Scholar 

  • Araújo-Jorge T, Barbosa H, Meirelles M (1982) Trypanosoma cruzi recognition by macrophages and muscle cells: perspectives after 15-year study. Mem Inst Oswaldo Cruz 87(Suppl 5):43–56

    Article  Google Scholar 

  • Asin S, Catalá S (1995) Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol. 81(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Attias M, Vommaro R, De Souza W (1996) Computer aided three-dimensional reconstruction of the free-living protozoan Bodo sp. (Kinetoplastida:Bodonidae). Cell Struct Funct 21(5):297–306

    Article  CAS  PubMed  Google Scholar 

  • Atwood J, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi Proteome. Science 309(5733):473–476. https://doi.org/10.1126/science.1110289

    Article  CAS  PubMed  Google Scholar 

  • Avila A, Yamada-Ogatta S, Da Silva MV, Krieger M, Nakamura C, De Souza W, Goldenberg S (2001) Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol. 117(2):169–177. https://doi.org/10.1016/s0166-6851(01)00346-2

    Article  CAS  PubMed  Google Scholar 

  • Avliyakulov N, Lukes J, Ray D (2004) Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in Crithidia fasciculata. Eukaryotic Cell. 3:518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azambuja P, Garcia E, Ratcliffe N (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 12:568–572. https://doi.org/10.1016/j.pt.2005.09.011

    Article  Google Scholar 

  • Bakshi R, Shapiro T (2004) RNA interference of Trypanosoma brucei topoisomerase IB: both subunits are essential. Mol & Biochem Parasitol. 136:249–255

    Article  CAS  Google Scholar 

  • Banerjee S, Kessler P, Saveria T, Parsons M (2005) Identification of trypanosomatid PEX19: Functional characterization reveals impact on cell growth and glycosome size and number. Mol Biochem Parasitol 142:47–55. https://doi.org/10.1016/j.molbiopara.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • Banerjee H, Knoblach B, Rachubinski RA (2019) The early-acting glycosome biogenic protein Pex3 is essential for trypanosome viability. Life Sci Alliance 2(4):e201900421. https://doi.org/10.26508/lsa.201900421

    Article  PubMed  PubMed Central  Google Scholar 

  • Bangs J (2011) Replication of the ERES: Golgi junction in bloodstream-form African trypanosomes. Mol Microbiol. 82(6):1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrias E, Dutra J, De Souza W, Carvalho TMU (2007) Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun. 363:828–834

    Article  CAS  PubMed  Google Scholar 

  • Barrias E, Reignault L, De Souza W, Carvalho TM (2012) Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect. 14:1340–1351

    Article  CAS  PubMed  Google Scholar 

  • Barrias E, De Carvalho T, De Souza W (2013) Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front Immunol. 4:186. https://doi.org/10.3389/fimmu.2013.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastin P, Sherwin T, Gull K (1998) Paraflagellar rod is vital for trypanosome motility. Nature 391(6667):548. https://doi.org/10.1038/35300

    Article  CAS  PubMed  Google Scholar 

  • Bastin P, Macrae T, Francis S, Matthews K, Gull K (1999) Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol. 19(12):8191–8200. https://doi.org/10.1128/mcb.19.12.8191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista C, Kessler R, Eger I, Soares MJ (2015) Trypanosoma cruzi intracellular amastigotes isolated by nitrogen decompression are capable of endocytosis and cargo storage in reservosomes. PLoS One 10(6):e0130165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer S, Morris MT (2017) Glycosome biogenesis in trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 11:e0005333. https://doi.org/10.1371/journal.pntd.0005333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer-Santos E, Aguliar-Bonavides C, Rodrigues S, Cordero E, Af M, Valera-Ramirez A, Choi H, Yoshida N, Jf DS, Almeida IC (2013) Proteomic analysis of Trypanosoma cruzi secretome. Characterization of two populations of extracellular vesicles and soluble proteins. J. Proteom. Res. 12:883–897

    Article  CAS  Google Scholar 

  • Bayer-Santos E, Lima F, Ruiz J, Almeida I, Da Silveira JF (2014) Characterization of the small RNA content of Trypanosma cruzi extacellular vesicles. Mol. Biochem. Parasitol. 193:71–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck K, Acestor N, Schulfer A, Anupama A, Carnes J, Panigrahi A (2013) Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryot Cell. 12:970–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belew A, Junqueira C, Rodrigues-Luiz G, Valente B, Oliveira A, Polidoro R, Zuccherato L, Bartholomeu D, Schenkman S, Gazzinelli R, Burleigh B, El-Sayed N, Teixeira SMR (2017) Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 13(12):e1006767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benatar A, García G, Bua J, Cerliani J, Postan M, Tasso L, Scaglione J, Stupirski J, Toscano C, Rabinovich W, Gómez K (2015) Galectin-1 prevents infection and damage induced by Trypanosoma cruzi on cardiac cells. PLoS Negl Trop Dis. 9(10):e0004148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berná L, Rodriguez M, Chiribao M, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F, Robello C (2018) Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom. 4(5):e000177. https://doi.org/10.1099/mgen.0.000177

    Article  CAS  PubMed Central  Google Scholar 

  • Bindereif A, Preußer C (2014) ER stress: how trypanosomes deal with it. Trends Parasitol 30(12):549–550

    Article  PubMed  Google Scholar 

  • Bonaldo M, Souto-Padron T, De Souza W, Goldenberg S (1988) Cell-substrate adhesion during Trypanosoma cruzi differentiation. J Cell Biol 106(4):1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Bonhivers M, Landrein N, Decossas M, Robinson DR (2008) Monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei. Parasit Vectors 1(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges B, Uehara I, Dias L, Brígido P, Da Silva C, Silva MJ (2016) Mechanism of infectivity and evasion derived from microvesicles cargo produced by Trypanosoma cruzi. Front Cell Infect Microbiol 6:161. https://doi.org/10.3389/fcimb.2016.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst P (1991) Why kinetoplast DNA network? Trends Genet 5:139–141

    Article  Google Scholar 

  • Bourguignon S, Mello C, Santos D, Gonzalez M, Souto-Padron T (2006) Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium. Acta Trop 98(1):103–109

    Article  CAS  PubMed  Google Scholar 

  • Bozza P, Bakker-Abreu I, Navarro-Xavier R, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. 85(5):205–213. https://doi.org/10.1016/j.plefa.2011.04.020

    Article  CAS  PubMed  Google Scholar 

  • Brack C (1968) Elektronmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma cruzi. Acta Trop. 25:289–356

    CAS  PubMed  Google Scholar 

  • Brener Z, Chiari E (1965) Aspects of early growth of different Trypanosoma cruzi strains in culture medium. J. Parasitol. 51:922–926

    Article  CAS  PubMed  Google Scholar 

  • Brenière S, Waleckx E, Barnabé C (2016) Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. PLoS Negl Trop Dis 10(8):e0004792

    Article  PubMed  PubMed Central  Google Scholar 

  • Buarque D, Gomes C, Araújo R, Pereira M, Ferreira R, Guarneri A, Tanaka A (2016) A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie. 123:138–143. https://doi.org/10.1016/j.biochi.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  • Burleigh BA (2005) Host cell signaling and Trypanosoma cruzi invasion: Do all roads lead to lysosomes? Science 293:36

    Google Scholar 

  • Burleigh B, Woolsey AM (2002) Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol. 4:701–711

    Article  CAS  PubMed  Google Scholar 

  • Buscaglia C, Di Noia JM (2003) Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect. 5(5):419–427. https://doi.org/10.1016/s1286-4579(03)00050-9

    Article  CAS  PubMed  Google Scholar 

  • Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M (2018) Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 8(1):14631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camargo EP (1964) Growth and differentiation in Trypanosoma Cruzi. I. origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100

    CAS  PubMed  Google Scholar 

  • Cardoso J, Soares M, Menna-Barreto R, Le Bloas R, Sotomaior V, Goldenberg S, Krieger MA (2008) Inhibition of proteasome activity blocks Trypanosoma cruzi growth and metacyclogenesis. Parasitol Res. 103(4):941–951. https://doi.org/10.1007/s00436-008-1081-6

    Article  PubMed  Google Scholar 

  • Carvalho T, De Souza W (1989) Early events related with the behaviour of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct. Funct. 14:383–392

    Article  PubMed  Google Scholar 

  • Casassa A, Vanrell M, Colombo M, Gottlieb R, Romano PS (2019) Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence. 10:151–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassola A (2011) RNA granules living a post-transcriptional life: the trypanosomes’ case. Curr Chem Biol. 5(2):108–117. https://doi.org/10.2174/2212796811105020108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro D, Seabra S, Garcia E, De Souza W, Azambuja P (2007) Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol. 117:201–207. https://doi.org/10.1016/j.exppara.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  • Catala S, Gorla D, Basombrio MA (1992) Vectorial transmission of Trypanosoma cruzi: an experimental field study with susceptible and immunized hosts. Am J Trop Med Hyg. 47(1):20–26. https://doi.org/10.4269/ajtmh.1992.47.20

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti D, De Souza W (2018) The kinetoplast of trypanosomatids: from early studies of electron microscopy to recent advances in atomic force microscopy. Scanning 2018:9603051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavalcanti D, Shimada M, Probst C, Souto-Padrón T, De Souza W, Goldenberg S (2009) Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi. BMC Microbiol 9:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cazzulo JJ (1992) Aerobic fermentation of glucose by trypanosomatids. FASEB J 6(13):3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Cazzulo J, Cazzulo Franke M, Martinez J, Franke De Cazzulo BM (1990) Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1037(2):186–191

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira G, Bartholomeu D, Darocha W, Hou L, Freitas-Silva D, Machado CR (2008) Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Mol Biochem Parasitol 157(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Cestari I, Ansa-Addo E, Deolindo P, Jm I, Ramirez MI (2012) Trypanosoma cruzi immune evasion mediated by host cell derived microvesicles. J. Immunol. 188:1942–1952

    Article  CAS  PubMed  Google Scholar 

  • Cevallos A, Segura-Kato Y, Merchant-Larios H, Manning-Cela R, Alberto Hernandez-Osorio L, Marquez-Duenas C, Ambrosio J, Reynoso-Ducoing O, Hernandez R (2011) Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol 127(1):249–259

    Article  CAS  PubMed  Google Scholar 

  • Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1(2):159–218

    Article  Google Scholar 

  • Champoux JJ (2001) DNA Topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413

    Article  CAS  PubMed  Google Scholar 

  • Chasen N (2020) Identification and localization of the first known proteins of the Trypanosoma cruzi cytostome cytopharynx endocytic complex. Front Cell Infect Microbiol. 9:445. https://doi.org/10.3389/fcimb.2019.00445. eCollection 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiurillo M, Cortez Dr Villalta F, Cortez C, Ramírez J, Martins AG (2016) The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. Infect Genet Evol. 37:266–274

    Article  CAS  PubMed  Google Scholar 

  • Choi J, El-Sayed NM (2012) Functional genomics of trypanosomatids. Parasite Immunol. 34(2–3):72–79

    Article  CAS  PubMed  Google Scholar 

  • Colli W, Alves MJ (1999) Relevant glycoconjugates on the surface of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 94(Suppl 1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Contreras V, Morel C, Goldenberg S (1985) Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Contreras V, Araujo-Jorge T, Bonaldo M, Thomaz N, Barbosa H, Meirelles M, Goldenberg S (1988) Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 83(1):123–133. https://doi.org/10.1590/s0074-02761988000100016

    Article  CAS  PubMed  Google Scholar 

  • Corrêa J, Atella G, Batista M, Soares MJ (2008) Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin-dependent endocytosis. Exp Parasitol. 119(1):58–66. https://doi.org/10.1016/j.exppara.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  • Cortez C, Martins R, Alves R, Silva C, Bilches L, Macedo S, Atayde V, Kawashita S, Briones M, Yoshida N (2012) Differential infectivity by the oral route of Trypanosoma cruzi lineages derived from Y strain. PLoS Negl Trop Dis. 6(10):e1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coura J, Viñas PA (2010) Chagas disease: a new worldwide challenge. Nature 465:S6–S7

    Article  PubMed  Google Scholar 

  • Cross G, Manning JC (1973) Cultivation of Trypanosoma brucei spp. in semi-defined and defined media. Parasitology 67:315–331

    Article  CAS  PubMed  Google Scholar 

  • Cueto J, Vanrell M, Salassa BN (2017) Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development. Cell Microbiol. 19:e12713

    Article  CAS  Google Scholar 

  • Da Cunha J, Nakayasu E, De Almeida I, Schenkman S (2006) Post-translational modifications of Trypanosoma cruzi histone H4. Mol Biochem Parasitol. 150(2):268–277

    Article  PubMed  CAS  Google Scholar 

  • Das A, Dasgupta A, Sengupta T, Majumder HK (2004) Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends Parasitol. 20:381–386

    Article  CAS  PubMed  Google Scholar 

  • Das A, Sengupta T, Majumder HK (2006) Topoisomerases of kinetoplastid parasites: why so fascinating? Mol Microbiol. 62:1–11

    Article  CAS  Google Scholar 

  • De Gaudenzi J, Frasch A, Clayton C (2005) RNA-binding domain proteins in Kinetoplastids: a comparative analysis. Eukaryot Cell. 4(12):2106–2114. https://doi.org/10.1128/EC.4.12.2106-2114.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Godoy L, Marchini F, Pavoni D, Rampazzo R, Probst C, Goldenberg S, Krieger MA (2012) Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 12(17):2694–2703

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira A, Alevi K, Imperador C, Madeira F, De Azeredo-Oliveira M (2018) Parasite–vector interaction of chagas disease: a mini-review. Am. J. Trop. Med. Hyg. 98:653–655. https://doi.org/10.4269/ajtmh.17-0657

    Article  PubMed  PubMed Central  Google Scholar 

  • De Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86:197–283

    Article  PubMed  Google Scholar 

  • De Souza W (2002) Basic cell biology of Trypanosoma cruzi. Curr Pharm Des 8(4):269–285

    Article  PubMed  Google Scholar 

  • De Souza W (2007) Macro, micro and nano domains in the membrane of parasitic protozoa. Parasitol Int 56(3):161–170. https://doi.org/10.1016/j.parint.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • De Souza W (2008) Electron microscopy of trypanosomes – a historical view. Mem Inst Oswaldo Cruz 103:313–325

    Article  PubMed  Google Scholar 

  • De Souza W, Arguello C, Martinez-Palomo A, Trissl D, Gonzales-Robles A, Chiari E (1977) Surface charge of Trypanosoma cruzi. Binding of cationized ferritin and measurement of cellular electrophoretic mobility. J Protozool 24:411–415

    Article  PubMed  Google Scholar 

  • De Souza W, De Carvalho T, Benchimol M, Chiari E (1978a) Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol 45(1):101–115

    Article  PubMed  Google Scholar 

  • De Souza W, Martinez-Palomo A, Gonzalez-Robles A (1978b) The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 33:285–299

    Article  PubMed  Google Scholar 

  • De Souza W, Attias M, Rodrigues JC (2009) Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol. 41(10):2069–2080

    Article  PubMed  CAS  Google Scholar 

  • De Souza F, Rampazzo R, Manhaes L, Soares M, Cavalcanti D, Krieger M (2010a) Knockout of the gene encoding the kinetoplast-associated protein 3 (KAP3) in Trypanosoma cruzi: Effect on kinetoplast organization, cell proliferation and differentiation. Mol Biochem Parasitol. 172(2):90–98

    Article  PubMed  CAS  Google Scholar 

  • De Souza W, Carvalho T, Barrias E (2010b) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol 2010:295394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias F, Zarantonello V, Parreira G, Chiarini-Garcia H, Melo RC (2014) The intriguing ultrastructure of lipid body organelles within activated macrophages. Microsc Microanal. 20(3):869–878. https://doi.org/10.1017/S143192761400066X

    Article  CAS  PubMed  Google Scholar 

  • Dichlberger A, Schlager S, Kovanen P, Schneider WJ (2016) Lipid droplets in activated mast cells – a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 785:59–69. https://doi.org/10.1016/j.ejphar.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  • Docampo R, Huang G (2016) Acidocalcisomes of eukaryotes. Curr Opin Cell Biol. 41:66–72. https://doi.org/10.1016/j.ceb.2016.04.00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docampo R, Scott D, Vercesi A, Moreno SN (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J. 310(Pt 3):1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docampo R, De Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol. 3:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dodson H, Morris M, Morris JC (2011) Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change. J Biol Chem 286(38):33150–33157. https://doi.org/10.1074/jbc.M111.235705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte M, Tomás A (2014) The mitochondrial complex I of trypanosomatids--an overview of current knowledge. J Bioenerg Biomembr 2014 46(4):299–311

    Article  CAS  Google Scholar 

  • Dvorak J, Schumunis G (1972) Trypanosoma cruzi: interaction with mouse peritoneal macrophages. Exp.Parasitol. 32:289–300

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Hall T, Crane M, Engel J, Mcdaniel J, Uriegas R (1982) Trypanosoma cruzi: flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. J Protozool 29(3):430–437

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Cunha J, Faria F, Mortara R, Freymüller E, Schenkman S (2007) Morphological events during the Trypanosoma cruzi cell cycle. Protist 158:147–157

    Article  CAS  PubMed  Google Scholar 

  • Elliot S, Rodrigues J, Lorenzo M, Martins-Filho O, Guarneri A (2015) Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis. 9(3):e0003646. https://doi.org/10.1371/journal.pntd.0003646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed N, Myler P, Blandin G, Berriman M, Crabtree J, Aggarwal G (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  CAS  PubMed  Google Scholar 

  • Emmer B, Nakayasu E, Souther C, Choi H, Sobreira T, Epting C, Nesvizhskii A, Almeida I, Engman DM (2011) Global analysis of protein palmitoylation in African trypanosomes. Eukaryot Cell. 10(3):455–463. https://doi.org/10.1128/EC.00248-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engman D, Krause K, Blumin J, Kim K, Kirchhoff L, Donelson JE (1989) A novel flagellar Ca2+-binding protein in trypanosomes. J Biol Chem. 264(31):18627–18631

    Article  CAS  PubMed  Google Scholar 

  • Ferguson M, Brimacombe J, Brown J, Crossman A, Dix A, Field R, Güther M, Milne K, Sharma D, Smith TK (1999) The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim Biophys Acta. 1455(2–3):327–340. https://doi.org/10.1016/s0925-4439(99)00058-7

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Calero T, Garcia-Silva R, Pena A, Robello C, Persson H, Rovira C, Naya H, Cayota A (2015) Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific-extracellular signature. Mol Biochem Parasitol. 199:19–28

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Presas A, Zavala J, Fauser I, Merchant Mt Guerrero L, Willms K (2001) Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera. Parasitol Res. 87(8):619–625. https://doi.org/10.1007/s004360100409

    Article  PubMed  Google Scholar 

  • Ferrão P, D’avila-Levy C, Araujo-Jorge T, Degrave W, Gonçalves A, Garzoni P, Lima A, Bailly S, Mendonça-Lima L, Waghabi M (2015) Cruzipain activates latent TGF-β from host cells during T. cruzi invasion. PLoS One 10(5):e0124832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira R, Melandre A, Cabral M, Branquinho M, Cardarelli-Leite P (2016) Extraction of Trypanosoma cruzi DNA from food: a contribution to the elucidation of acute Chagas disease outbreaks. Tev Soc Bras Med Trop. 49(2):190–195. https://doi.org/10.1590/0037-8682-0414-2015

    Article  Google Scholar 

  • Fidalgo L, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res. 28(11):2758–2770. https://doi.org/10.1007/s11095-011-0586-3

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo R, Soares MJ (1995) The Golgi complex of Trypanosoma cruzi epimastigote forms. J Submicrosc Cytol Pathol. 27(2):209–215

    CAS  PubMed  Google Scholar 

  • Fok A, Aihara M, Ishida M, Nolta K, Steck T, Allen RD (1995) The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J Cell Sci. 108(10):3163–3170

    Article  CAS  PubMed  Google Scholar 

  • Fragoso S, Goldenberg S (1990) Cloning and characterization of the gente encoding Trypanosoma cruzi DNA topoisomerase II. Mol Biochem Parasitol 55:127–134

    Article  Google Scholar 

  • Franco F, Paranhos-Bacallà G, Yamauchi L, Yoshida N, Da Silveira JF (1993) Characterization of a cDNA clone encoding the carboxy-terminal domain of a 90-kilodalton surface antigen of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun 61(10):4196–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke De Cazzulo B, Martinez J, North M, Coombs G, Cazzulo JJ (1994) Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol Lett 124(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel T, Subota I, Schlosser A, Carrington M, Kramer S (2015) Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Res. 43(16):8013–8032. https://doi.org/10.1093/nar/gkv731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia E, Azambuja P (1991) Development and interaction of Trypanosoma cruzi within the insect vector. Parasitol. Today 7:240–244

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva M, Tosar J, Frugier M, Pantano S, Bonilla B, Esteban L, Serra E, Rovira C, Robeloo C, Cayota A (2010) Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene 466:26–35

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva M, Cura Das Neves RF, Cabrera-Cabrera F, Sanguinetti J, Medeiros LC, Robello C, Naya H, Fernadez-Galero T, Souto-Padron T, De Souza W (2013) Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation and susceptibility to infection of mammalian cells. Parasitol. Res. 113:285–304

    Article  PubMed  Google Scholar 

  • Gaunt M, Yeo M, Frame L, Stothard JR (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421:936–939

    Article  CAS  PubMed  Google Scholar 

  • Gerasimov E, Zamyatnina K, Matveeva N, Rudenskaya Y, Kraeva N, Kolesnikov AA (2020) Common structural patterns in the maxicircle divergent region of trypanosomatidae. Pathogens. 9(2):100

    Article  CAS  PubMed Central  Google Scholar 

  • Gibson W, Miles M (1986) The karyotype and ploidy of Trypanosoma cruzi. EMBO J. 5(6):1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginger ML (2013) Calmodulin is required for paraflagellar rod assembly and flagellum–cell body attachment in trypanosomes. Protist. 164:528–540

    Article  CAS  PubMed  Google Scholar 

  • Girard-Dias W, Alcantara CL, Cunha N, De Souza W, Miranda K (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol. 138(6):821–831

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg S, Avila AR (2011) Aspects of Trypanosoma cruzi stage differentiation. Adv Parasitol. 75:285–305. https://doi.org/10.1016/B978-0-12-385863-4.00013-7

    Article  PubMed  Google Scholar 

  • Gonçalves M, Umezawa E, Katzin A, De Souza W, Alves M, Zingales B, Colli W (1991) Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp.Parasitol. 72:43–53

    Article  PubMed  Google Scholar 

  • Gonçalves CS, Ávila AR, De Souza W, MCM M, Cavalcanti DP (2018) Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation. Parasit Vectors 11(1):83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gourbière S, Dorn P, Tripet F, Dumonteil E (2012) Genetics and evolution of triatomines: from phylogeny to vector control. Heredity (Edinb). 108(3):190–202. https://doi.org/10.1038/hdy.2011.71

    Article  PubMed  Google Scholar 

  • Grams J, Morris JC, Drew M, Wang Z, Englund P, Hajduk SL (2002) A trypanosome mitochondrial RNA polymerase is required for transcription and replication. J Biol Chem 277:16952–16959

    Article  CAS  PubMed  Google Scholar 

  • Grant B, Donaldson J (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2(10):721–730

    Article  CAS  PubMed  Google Scholar 

  • Gualdrón-López M, Brennand A, Avilán L, Michels PA (2013) Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology. 140(1):1–20. https://doi.org/10.1017/S0031182012001278

    Article  CAS  PubMed  Google Scholar 

  • Guarneri AA, Lorenzo MG (2017) Triatomine physiology in the context of trypanosome infection. J. Insect Physiol. 97:66–76. https://doi.org/10.1016/j.jinsphys.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  • Guhl F (2017) Geographical distribution of Chagas disease. Am. Trypanosom. Chagas Dis. 2017:89–112. https://doi.org/10.1016/B978-0-12-801029-7.00005-8

    Article  Google Scholar 

  • Guhl F, Ramírez JD (2011) Trypanosoma cruzi I diversity: towards the need of genetic subdivision? Acta Trop. 119(1):1–4. https://doi.org/10.1016/j.actatropica.2011.04.002

    Article  PubMed  Google Scholar 

  • Gumiel M, Da Mota FF, Rizzo Vde S, Sarquis O, De Castro DP, Lima MM, Garcia ES, Carels N, Azambuja P (2015) Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 8:245. https://doi.org/10.1186/s13071-015-0836-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler R, Cardinal M (2015) Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 151:32–50

    Article  PubMed  Google Scholar 

  • Güther M, Urbaniak M, Tavendale A, Prescott A, Ferguson M (2014) High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 13:2796–2806. https://doi.org/10.1021/pr401209w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B, Pereira M (2000) Dual role for transforming growth factor β-dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infect Immun. 68:2077–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B, Furtado G, Joiner KA (1991) Characterization of host cell-derived membrane proteins of the vacuole surrounding different intracellular forms of Trypanosoma cruzi in J774 cells. Evidence for phagocyte receptor sorting during the early stages of parasite entry. J Immunol. 147:4313–4321

    CAS  PubMed  Google Scholar 

  • Harada S, Inaoka D, Ohmori J, Kita K (2013) Diversity of parasite complex II. Biochim Biophys Acta. 1827(5):658–667

    Article  CAS  PubMed  Google Scholar 

  • He C, Ho H, Malsam J, Chalouni C, West C, Ullu E (2004) Golgi duplication in Trypanosoma brucei. J Cell Biol 165(3):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksson J, Aslund L, Macina RA, Franke De Cazzulo BM, Cazzulo JJ (1990) Chromosomal localization of seven cloned antigen genes provides evidence of diploidy and further demonstration of karyotype variability in Trypanosoma cruzi. Mol Biochem Parasitol. 42(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Heuser J, Zhu Q, Clarke M (1993) Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J Cell Biol. 121(6):1311–1327. https://doi.org/10.1083/jcb.121.6.1311

    Article  CAS  PubMed  Google Scholar 

  • Heywood P, Weinman D (1978) Mitosis in the hemoflagellate Trypanosoma cyclops. Protozool. 125:287–292

    Article  Google Scholar 

  • Hissa B, Andrade LO (2015) Trypasonoma cruzi uses a specific subset of host cell lysosomes for cell invasion. Parasitol Int 64:135–138

    Article  CAS  PubMed  Google Scholar 

  • Ho H, He C, De Graffenried C, Murrells J, Warren G (2006) Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc Natl Acad Sci U S A 103(20):7676–7681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoare CA, Wallace FG (1966) Developmental stages of trypanosomatid flagellates: a new terminology. Nature. 212:1385–1386

    Article  Google Scholar 

  • Hoeijmakers J, Weijers PJ (1980) The segregation of kinetoplast DNA networks in Trypanosoma brucei. Plasmid 4:97–116

    Article  CAS  PubMed  Google Scholar 

  • Hoeller D, Volarevic S, Dikic I (2005) Compartmentalization of growth factor receptor signalling. Curr Opin Cell Biol 17(2):107–111

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Hu L, Yu Z, Chasse AE, Chu F, Li Z (2012 Sep 1) An orphan kinesin in trypanosomes cooperates with a kinetoplastid-specific kinesin to maintain cell morphology by regulating subpellicular microtubules. J Cell Sci. 125(Pt 17):4126–4136. https://doi.org/10.1242/jcs.106534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islinger M, Voelkl A, Fahimi H, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol. 150(5):443–471. https://doi.org/10.1007/s00418-018-1722-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AP (2015) Genome evolution in trypanosomatid parasites. Parasitology 142(Suppl 1):S40–S56

    Article  PubMed  Google Scholar 

  • Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TSK, Gowda H, Pandey A, Patole MS (2015) Comprehensive proteomics analysis of glycosomes from Leishmania Donovani. OMICS. 19(3):157–170. https://doi.org/10.1089/omi.2014.0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen C, Fernandez J, Deng H, Diaz R, Hake S (2006) Unusual histone modifications in Trypanosoma brucei. FEBS Lett 580:2306–2310

    Article  CAS  PubMed  Google Scholar 

  • Jensen R, Englund P (2012) Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 66:473–491

    Article  CAS  PubMed  Google Scholar 

  • Jung G, Titus MA, Hammer JA (2009) The Dictyostelium type V myosin MyoJ is responsible for the cortical association and motility of contractile vacuole membranes. J Cell Biol 186(4):555–570. https://doi.org/10.1083/jcb.200810147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaksonen M, Toret C, Drubin DG (2005) A modular design for the clathrin- and actinmediated endocytosis machinery. Cell 123(2):305–320

    Article  CAS  PubMed  Google Scholar 

  • Kalel VC, Schliebs W, Erdmann R (2015) Identification and functional characterization of Trypanosoma brucei peroxin 16. Biochim Biophys Acta 1853:2326–2337

    Article  CAS  PubMed  Google Scholar 

  • Kaufer A, Ellis J, Stark D, Barratt J (2017) The evolution of trypanosomatid taxonomy. Parasit Vectors 10(1):287

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler L, Pavoni D, Krieger M, Probst CM (2017) Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures. BMC Genomics. 18(1):793. https://doi.org/10.1186/s12864-017-4163-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl L, Gull K (1998) Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 93(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Krüger T, Hofweber M, Kramer S (2013) SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell. 24(13):2098–2111. https://doi.org/10.1091/mbc.E13-01-0068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalonde R, Holbein BE (1984) Role of iron in Trypanosoma cruzi infection of mice. J Clin Invest 73(2):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander N, Cordeiro C, Huang G, Docampo R (2016 Feb) (2016). Polyphosphate and acidocalcisomes. Biochem Soc Trans. 44(1):1–6. https://doi.org/10.1042/BST20150193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legartová S, Stixová L, Strnad H, Kozubek S, Martinet N, Dekker FJ, Franek M, Bártová E (2013) Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors. Epigenomics 4:379–396

    Article  CAS  Google Scholar 

  • Li Z, Lindsay M, Motyka S, Englund P, Wang CC (2008) Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 4(4):e1000048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liendo A, Visbal G, Piras M, Piras R, Urbina JA (1999) Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes. Mol Biochem Parasitol 104(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Lima M, Villalta F (1990) Trypanosoma cruzi receptors for human transferrin and their role. Mol Biochem Parasitol 38(2):245–252

    Article  CAS  PubMed  Google Scholar 

  • Linder J, Staehelin L (1977) Plasma membrane specialization in a trypanosomatid flagellate. J Ultrastruct Res 60:246–262

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Liu Y, Motyka S, Agbo E, Englund P (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21:363–369

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang J, Yaffe N, Lindsay ME, Zhao Z, Zick A, Shlomai J, Englund P (2009) Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 35:490–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo VG (1984) Role of iron in intracellular growth of Trypanosoma cruzi. Infect Immun 45(3):726–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukes J, Guilbride D, Votýpka J, Zíková A, Benne R, Englund PT (2002) Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 2014 195(2):115–122

    Article  CAS  Google Scholar 

  • Magdesian MH, Tonelli RR, Fessel MR, Silveira MS, Schumacher RI, Linden R, Colli W, Alves MJ (2007) A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Exp Cell Res. 313:210–218

    Article  CAS  PubMed  Google Scholar 

  • Malaga S, Yoshida N (2001) Targeted reduction in expression of Trypanosoma cruzi surface metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin. Microbiol. 4(11):701–711

    Google Scholar 

  • Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124(4):729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T (2019) Nucleolar structure and function in trypanosomatid protozoa. Cells 8(5):421

    Article  PubMed Central  CAS  Google Scholar 

  • Martínez-Iglesias O, Ruiz-Llorente L, Sánchez-Martínez R, García L, Zambrano A, Aranda A (2008) Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol. 7:395–398

    Article  CAS  Google Scholar 

  • Martinez-Palomo A, De Souza W, Gonzalez-Robles A (1976) Topographical differences in the distribution of surface coat components and intramembrane particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 69(2):50713

    Article  Google Scholar 

  • Martins R, Alves R, Macedo S, Yoshida N (2011) Starvation and rapamycin 18 differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. Cell Microbiol 13:943–954

    Article  CAS  PubMed  Google Scholar 

  • Martins N, Souza R, Cordero E, Maldonado D, Cortez C, Marini M, Ferreira E, Bayer-Santos E, Almeida I, Yoshida N, Silveira J (2015) Molecular characterization of a novel family of Trypanosoma cruzi surface membrane proteins (TcSMP) involved in mammalian host cell invasion. PLoS Negl Trop Dis. 9(11):e0004216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maslov D, Opperdoes F, Kostygov A, Hashimi H, Lukeš J, Yurchenko V (2018) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146(1):1–27

    Article  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612

    Article  CAS  PubMed  Google Scholar 

  • Meirelles MNL, Araújo-Jorge TC, De Souza W (1982) Interaction of Trypanosoma cruzi with macrophages in vitro: dissociation of the attachment and internalization phases by low temperature and cytochalasin B. Z. Parasitenkd 68:7–14

    Article  PubMed  Google Scholar 

  • Mellman I (1996a) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  CAS  PubMed  Google Scholar 

  • Mellman I (1996b) Membranes and sorting. Curr Opin Cell Biol 8(4):497–498

    Article  CAS  PubMed  Google Scholar 

  • Melo R, Guarneri A, Silber AM (2020) The influence of environmental cues on the development of Trypanosoma cruzi in triatominae vector. Front Cell Infect Microbiol 10:27. https://doi.org/10.3389/fcimb.2020.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menna-Barreto R, De Castro SL (2014) The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Res Int 2014:614014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A (2019) Kinetoplast Division Factors in a Trypanosome. Trends in Parasitology 35:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesquita R, Vionette-Amaral R, Lowenberger C, Rivera-Pomar R, Monteiro F, Minx P (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A. 112(48):14936–14941. https://doi.org/10.1073/pnas.1506226112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer H, De Souza W (1973) On the fine structure of Trypanosoma cruzi in tissue cultures of pigment epithelium from the chick embryo. Uptake of melanin granules by the parasite. J Protozool 20(5):590–593

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Porter K (1954) A study of Trypanosoma cruzi with the electron microscope. Parasitology 44(1–2):16–23. https://doi.org/10.1017/S0031182000018722

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Xavier De Oliveira M (1948) Cultivation of Trypanosoma cruzi in tissue culture: a four year study. Parasitology 39:91–94

    Article  CAS  PubMed  Google Scholar 

  • Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 1:1–13

    Article  CAS  Google Scholar 

  • Monteiro AC, Abrahamson M, Lima AP, Vannier-Santos MA, Scharfstein J (2001) Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci 114(Pt 21):3933–3942

    Article  CAS  PubMed  Google Scholar 

  • Moreira B, Fonseca C, Hammarton T, Baqui M (2017) Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei. J Cell Sci. 130(6):1179–1193. https://doi.org/10.1242/jcs.194308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno S, Docampo R (2003) Calcium regulation in protozoan parasites. Curr Opin Microbiol 6(4):359–364

    Article  CAS  PubMed  Google Scholar 

  • Morgado-Díaz J, Nakamura C, Agrellos O, Dias W, Previato J, Mendonça-Previato L, De Souza W (2001) Isolation and characterization of the Golgi complex of the protozoan Trypanosoma cruzi. Parasitology 123(Pt 1):33–43

    Article  PubMed  Google Scholar 

  • Morris J, Drew M, Klingbeil M, Motyka S, Saxowsky T, Wang Z, Englund P (2011) Replication of kinetoplast DNA: an update for the new millennium. Int J Parasitol. 31:453–458

    Article  Google Scholar 

  • Motta M, De Souza W, Thiry M (2003) Immunocytochemical detection of DNA and RNA in endosymbiont-bearing trypanosomatids. Microbiol Letters 221:17–23

    Article  CAS  Google Scholar 

  • Motta FN, Bastos IM, Faudry E, Ebel C, Lima M, Neves D, Ragno M, Barbosa JA, De Freitas SM, Santana JM (2012) The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One 7(1):e30431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugo E, Clayton C (2017) Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 13(8):e1006560. https://doi.org/10.1371/journal.ppat.1006560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negreiros R, Lander N, Huang G, Cordeiro C, Smith S, Morrissey J, Docampo R (2018) Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol. 110(6):973–994. https://doi.org/10.1111/mmi.14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neira I, Silva F, Cortez M, Yoshida N (2003) Involvement of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin and invasion of epithelial cells. Infect Immun 71:557–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus A, Eggeling C, Erdmann R, Schliebs W (2016) Why do peroxisomes associate with the cytoskeleton? Biochim Biophys Acta. 1863(5):1019–1026. https://doi.org/10.1016/j.bbamcr.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  • Neves DP (1971) Influencia da temperatura na evoluçao do Trypanosoma cruzi em triatominos. Rev. Inst. Med. Trop. Sao. Paulo. 13:155–161

    CAS  PubMed  Google Scholar 

  • Neves RF, Fernandes AC, Meyer-Fernandes JR, Souto-Padrón T (2014) Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res. 113:2961–2972

    Article  PubMed  Google Scholar 

  • Niyogi S, Jimenez V, Girard-Dias W, De Souza W, Miranda K, Docampo R (2015) Rab32 is essential for maintaining functional acidocalcisomes and for growth and infectivity of Trypanosoma cruzi. J Cell Sci. 128:2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira N, Cohn Z (1976) Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med. 143:1402–1420

    Article  CAS  PubMed  Google Scholar 

  • Nogueira NF, Gonzalez MS, Gomes JE, DE Souza W, Garcia ES, AZambuja P, Nohara LL, Almeida IC, Zingales B, Colli W (2007) Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol. 116:120–128

    Article  CAS  PubMed  Google Scholar 

  • Nogueira NP, Saraiva FM, Sultano PE, Cunha PR, Laranja GA, Justo GA, Sabino KC, Coelho MG, Rossini A, ATella GC, Paes MC (2015a) Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One. 10(2):e0116712. https://doi.org/10.1371/journal.pone.0116712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira P, Ribeiro K, Silveira C, Campos J, Martins Filho C, Bela S, Campos M, Pessoa M, Colli W, Alves M, Soares R, Torrecilhas A (2015b) Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune response. J. Extrac. Ves. 26(4):28734

    Article  CAS  Google Scholar 

  • Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108:501–513

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Esteva M, Segura E, Bijovs Y (1999) The cytostome of Trypanosoma cruzi epimastigotes is associated with the flagellar complex. Exp Parasitol 92(4):223–231

    Article  CAS  PubMed  Google Scholar 

  • Ooi C, Smith T, Gluenz E, Wand N, Vaughan S, Rudenko G (2018) Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei. Traffic 19(6):391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paba J, Ricart CA, Fontes W, Santana JM, Teixeira AR, Marchese J, Williamson B, Hunt T, Karger BL, Sousa MV (2004) Proteomic analysis of Trypanosoma cruzi developmental stages using isotope-coded affinity tag reagents. J Proteome Res. 3(3):517–524. https://doi.org/10.1021/pr034075o

    Article  CAS  PubMed  Google Scholar 

  • Parodi AJ, Pollevick GD, Mautner M, Buschiazzo A, Sanchez DO, Frasch AC (1992) Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. EMBO J. 11:1705–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parussini F, Garcia M, Mucci J, Aguero F, Sanchez D, Hellman U, Aslund L, Cazzulo JJ (2003) Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Mol Biochem Parasitol 131(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Patterson DJ (1980) Contractile vacuoles associated structures: their organization and function. Biol. Rev 55:1–46

    Article  CAS  Google Scholar 

  • Pereira ME, Zhang K, Gong Y, Herrera EM, Ming M (1996) Invasive phenotype of Trypanossoma cruzi restricted to a population expressing trans sialidase. Infect. Immun. 64:3884–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira MG, Nakayasu ES, Sant’anna C, De Cicco N, Atella G, De Souza W, Almeida I, Cunha-e-Silva N (2011) Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS One 6(7):e22359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira MG, Visbal G, Costa T, Frases S, De Souza W, Atella G, Cunha-e-Silva N (2018) Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Mol Biochem Parasitol. 224:6–16. https://doi.org/10.1016/j.molbiopara.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  • Pimenta P, De Souza W (1985) Fine structure and cytochemistry of the endoplasmic reticulum and its association with the plasma membrane of Leishmania mexicana amazonensis. J Submicrosc Cytol. 17(3):413–419

    CAS  PubMed  Google Scholar 

  • Pimenta PF, De Souza W, Souto-Padron T, Pinto da Silva P (1989) The cell surface of Trypanosoma cruzi: a fracture-flip, replica-staining label-fracture survey. Eur J Cell Biol 50(2):263–271

    CAS  PubMed  Google Scholar 

  • Pinazo M, Thomas M, Bustamante J, Almeida I, Lopez M, Gascon J (2015) Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz. 110:422–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda MA, Cuervo H, Fresno M, Soto M, Bonay P (2015) Lack of galectin-3 prevents cardiac fibrosis and effective immune responses in a murine model of Trypanosoma cruzi infection. J. Infect. Dis. 212:1160–1171. https://doi.org/10.1093/infdis/jiv185

    Article  CAS  PubMed  Google Scholar 

  • Porto-Carreiro I, Attias M, Miranda K, De Souza W, Cunha-e-Silva N (2000) Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol 79(11):858–869

    Article  CAS  PubMed  Google Scholar 

  • Previato JO (2004) alpha-2,3-sialyllactitol is a donor substrate for Trypanosoma cruzi trans-sialidase. Glycobiology 14(10):25G; author reply 26G. https://doi.org/10.1093/glycob/cwh124

    Article  CAS  PubMed  Google Scholar 

  • Previato J, Andrade A, Pessolani M, Mendonça-Previato L (1985) Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Mol Biochem Parasitol. 16(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Docampo R (2018) Membrane proteins in trypanosomatids involved in Ca2+ homeostasis and signaling. Genes (Basel) 9(6):304

    Article  CAS  Google Scholar 

  • Ramírez JD, Hernández C (2018) Trypanosoma cruzi I: Towards the need of genetic subdivision? Part II. Acta Trop. 184:53–58. https://doi.org/10.1016/j.actatropica.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  • Ramirez I, De Graffenried C, Ebersberger I, Yelinek J, He C, Price A, Warren G (2008) TbG63, a golgin involved in Golgi architecture in Trypanosoma brucei. J Cell Sci 121(Pt 9):1538–1546

    Article  CAS  PubMed  Google Scholar 

  • Ramirez MI, Deolindo P, De Messias-Reason IJ, Arigi EA, Choi H, Almeida IC, Evans-Osses I (2017) Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol. 19:e12672. https://doi.org/10.1111/cmi.12672

    Article  CAS  Google Scholar 

  • Rebello K, Uehara L, Ennes-Vidal V, Garcia-Gomes A, Britto C, Azambuja P, Menna-Barreto R, Santos A, Branquinha M, D’avila-Levy C (2019) Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Parasitology 146(8):1075–1082. https://doi.org/10.1017/S0031182019000441

    Article  CAS  PubMed  Google Scholar 

  • Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca (2+)-regulated exocytosis of lysosomes. Cell. 106:157–169

    Article  CAS  PubMed  Google Scholar 

  • Reignault LC, Barrias ES, Soares Medeiros LC, De Souza W, De Carvalho TM (2014) Structures containing galectin-3 are recruited to the parasitophorous vacuole containing Trypanosoma cruzi in mouse peritoneal macrophages. Parasitol Res 113:2323–2333

    Article  PubMed  Google Scholar 

  • Reignault LC, Alcantra C, Barrias ES, De Souza W (2019) 3D reconstruction of Trypanosoma cruzi-macrophage interaction shows the recruitment of host cell organelles towards the parasitophorous vacuole during its biogenesis. J Struct Biol 205(2):133–146. https://doi.org/10.1016/j.jsb.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  • Reis-Cunha JL, Bartholomeu DC (2019) Trypanosoma cruzi genome assemblies: Challenges and milestones of assembling a highly repetitive and complex genome. In: Methods in molecular biology. Humana Press Inc, New York, pp 1–22

    Google Scholar 

  • Ribeiro K, Vasconcellos C, Soares R, Mendes M, Ellis C, Aguilera-Flores M, De Almeida I, Schenkman S, Iwai L, Torrecilhas A (2018) Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles. 7:1463779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rittig MG, Scroppel K, Sack KH, Sander U, N’diaye EN, Parini I, Solbach W, Bogdan C (1998) Coiling phagocytosis of trypanosomatids and fungal cells. Infec. Immun. 66:4331–4339

    Article  CAS  Google Scholar 

  • Robinson MS, Watts C, Zerial M (1996) Membrane dynamics in endocytosis. Cell 84(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Riolt MG, Ora A, Andrews NA (1995) A trypanosome-soluble factor induces PI3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J. Cell. Biol. 129:1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Samoff E, Riolt MG, Andrews NA (1996) Host cell invasion by Trypanosomes requires lysosomes and microtubule/kinesin-mediated transport. J.Cell.Biol. 134:349–362

    Article  CAS  PubMed  Google Scholar 

  • Rohloff P, Docampo R (2008) A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol. 118:17–24

    Article  CAS  PubMed  Google Scholar 

  • Rohloff P, Rodrigues C, Docampo R (2003) Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126:219–230

    Article  CAS  PubMed  Google Scholar 

  • Roingeard P, Melo RC (2016) Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 19:e12688. https://doi.org/10.1111/cmi.12688

    Article  CAS  Google Scholar 

  • Romaña C, Meyer H (1942) Estudo do ciclo evolutivo do Schizotrypanum cruzi em cultura de tecidos de embrião de galinha. Mem. Inst Oswaldo Cruz 37:19–27

    Article  Google Scholar 

  • Romano PS, Cueto JA, Cassassa AF, Vanrell MC, Gotlieb RA, Colombo MI (2012) Molecular and cellular mechanisms involved in the Trypanosoma cruzi host cell interplay. IUBMB Life 64:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rondinelli E, Silva R, Carvalho JF, Almeida-Soares JM, De Carvalho EF, De Castro F (1988) Trypanosoma Cruzi: an in vitro cycle of cell differentiation in axenic culture. Exp Parasitol. 66(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Rosestolato CT, Dutra JM, De Souza W, De Carvalho TM (2002) Participation of hoste cell actin filaments during interaction of trypomastigotes forms of Trypanosoma cruzi with host cells. Cell. Struct. Funct. 27:91–98

    Article  CAS  PubMed  Google Scholar 

  • Rubin-de-Celis SS, Uemura H, Yoshida N, Schenkman S (2006) Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell Microbiol 8:1888–1898

    Article  PubMed  CAS  Google Scholar 

  • Ruiz RC, Favoreto ML, Dorta MEM, Oshiro A, Ferreira P, Manque P, Yoshida N (1998) Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca+2 signaling activity. Biochem. J. 330:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahasrabuddhe AA, Bajpai VK, Gupta CM (2004) A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules. Mol Biochem Parasitol. 134(1):105–114. https://doi.org/10.1016/j.molbiopara.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  • San Francisco J, Barría I, Gutiérrez B, Neira I, Muñoz C, Sagua H, Araya JE, Andrade JC, Zailberger A, Catalán A, Remonsellez F, Vega JL, González J (2017) Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect 19:55–61

    Article  CAS  PubMed  Google Scholar 

  • Sant’anna C, Parussini F, Lourenco D, De Souza W, Cazzulo JJ, Cunha-E-Silva NL (2008) All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 130(6):1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Santos MR, Cano MI, Schijman A, Lorenzi H, Vázquez M, Levin MJ, Ramirez JL (1997) The Trypanosoma cruzi genome project: nuclear karyotype and gene mapping of clone CL brener. Mem Inst Oswaldo Cruz 92(6):821–828

    Article  CAS  PubMed  Google Scholar 

  • Santos C, Sant’Anna C, Terres A, Cunha-e-Silva N, Scharfstein J, Lima AP (2005) Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J Cell Sci 118(Pt 5):901–915

    Article  CAS  PubMed  Google Scholar 

  • Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, Morrot A, Juliano L, Müller-Esterl W (2000) Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med. 192:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub GA (1989) Trypanosoma cruzi: quantitative studies of development of two strains in small intestine and rectum of the vector Triatoma infestans. Exp. Parasitol. 68:260–273

    Article  CAS  PubMed  Google Scholar 

  • Schaub GA, Kleffmann T, Kollien A, Schmidt J (1998) Hydrophobic attachment of Trypanosoma cruzi to the rectal cuticle of Triatoma infestans and its influence on metacyclogenesis - a review. Tokai J Exp Clin Med 23(6):321–327

    CAS  PubMed  Google Scholar 

  • Schenkman S, Eichinger D (1993) Trypanosoma cruzi trans sialidase and cell invasion. Parasitol. Today 9:218–222

    Article  CAS  PubMed  Google Scholar 

  • Schenkman S, Jiang MS, Hart G, Nussenzweig V (1991) A novel cell surface trans sialidase of Trypanososma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Schmunis G, Szarfman A, De Souza W, Langembach T (1980) Trypanosoma cruzi: antibody-induced mobility of surface antigens. Exp. Parasitol. 50(1):90–102

    Article  CAS  PubMed  Google Scholar 

  • Schneider A (2018) Mitochondrial protein import in trypanosomatids: Variations on a theme or fundamentally different? PLoS Pathog 14(11):e1007351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider A, Ochsenreiter T (2018) Failure is not an option - mitochondrial genome segregation in trypanosomes. J Cell Sci 131(18):jcs221820

    Article  PubMed  CAS  Google Scholar 

  • Schott M, Weller S, Schulze R, Krueger E, Drizyte-Miller K, Casey C, Mcniven M (2019) Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol. 218(10):3320–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scocca J, Shapiro T (2008) A mitocondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes. Mol Microbiol. 67:820–829

    Article  CAS  PubMed  Google Scholar 

  • Selvapandiyan A, Kumar P, Jl S, Wang C, Hl N (2012) Role of centrins 2 and 3 in organelle segregation and cytokinesis in Trypanosoma brucei. PLoS One 7(9):e45288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheriff O, Lim L, He C (2014) Tracking the biogenesis and inheritance of subpellicular microtubule in Trypanosoma brucei with inducible YFP-α-tubulin. Biomed Res Int. 2014:893272. https://doi.org/10.1155/2014/893272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci. 323(1218):573–588. https://doi.org/10.1098/rstb.1989.0037

    Article  CAS  PubMed  Google Scholar 

  • Simpson L (1987) The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Ann Rev Microbiol. 41:363–382

    Article  CAS  Google Scholar 

  • Sinclair AN, De Graffenried CL (2019) More than microtubules: the structure and function of the subpellicular array in trypanosomatids. Trends Parasitol. 35(10):760–777. https://doi.org/10.1016/j.pt.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares MJ, De Souza W (1987) Ultrastructural visualization of lipids in trypanosomatids. J Protozool. 34(2):199–203. https://doi.org/10.1111/j.1550-7408.1987.tb03160.x

    Article  CAS  PubMed  Google Scholar 

  • Soares MJ, DE Souza W (1988) Cytoplasmic organelles of trypanosomatids: a cytochemical and stereological study. J Submicrosc Cytol Pathol 20(2):349–361

    CAS  PubMed  Google Scholar 

  • Soares MJ, DE Souza W (1991) Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77(6):461–468

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ (1980) The 3-dimensional fine structure of the mitotic spindle in Trypanosoma cruzi. Chromosoma 78:239–255

    Article  CAS  PubMed  Google Scholar 

  • Souto-Padrón T, De Souza W (1978) Ultrastructural localization of basic proteins in Trypanosoma cruzi. J Histochem Cytochem 26:349–358

    Article  PubMed  Google Scholar 

  • Souto-Padron T, De Souza W (1979) Cytochemical analysis at the fine-structural level of trypanosomatids stained with phosphotungstic acid. J Potozool 26:551–557

    Article  CAS  Google Scholar 

  • Souto-Padron T, De Souza W (1983) Freeze–fracture localization of filipin– cholesterol complexes in the plasma membrane of Trypanosoma cruzi. J Parasitol. 69:129–137

    Article  CAS  PubMed  Google Scholar 

  • Souto-Padrón T, De Souza W (1984) Quick-Freeze, deep-etch rotary replication of Trypanosoma cruzi and Herpetomonas megaseliae. J Cell Sci 69:167–117

    Article  PubMed  Google Scholar 

  • Souto-Padrón TC, Hath G, De Souza W (1998) Immunocytochemical localization of neuroaminidase in Trypanososma cruzi. Infect Immun. 58:586–592

    Article  Google Scholar 

  • Souza LC, Pinho RE, Lima CV, Fragoso SP, Soares MJ (2013) Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea). Mem Inst Oswaldo Cruz. 108(5):631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadiliero B, Sánchez F, Slezynger TC, Henríquez D (2002) Differences in the nuclear chromatin among various stages of the life cycle of Trypanosoma cruzi. J Cell Biochem 84:832–839

    Article  PubMed  CAS  Google Scholar 

  • Stevens JR (2008) Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite 15(3):226–232

    Article  CAS  PubMed  Google Scholar 

  • Sunter JD, Gull K (2016) The flagellum attachment zone: ‘the cellular ruler’ of trypanosome morphology. Trends Parasitol. 32(4):309–324. https://doi.org/10.1016/j.pt.2015.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, Martin WJ, Nakayasu ES, Almeida IC, Hajduk SL, Harrington JM (2016) Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 164(1-2):246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 189:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, Heuser JE, Andrews NW (1992) Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell. 71:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Teixeira DE, Benchimol M, Crepaldi PH, De Souza W (2012a) Interactive multimedia to teach the life cycle of Trypanosoma cruzi, the causative agent of Chagas disease. PLoS Negl Trop Dis. 6:e1749

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira SM, De Paiva RM, Kangussu-Marcolino MM, DaRocha WD (2012b) Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol. 35(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiry M (1995) Nucleic acid compartimentalization within the cell nucleus by in situ transferase-immunogold techniques. Microsc Res Tech 31:4–21

    Article  CAS  PubMed  Google Scholar 

  • Tjelle TE, Brech A, JuvetLK GG, Berg T (1996) Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci, v. 109(12):2905–2914

    Article  CAS  Google Scholar 

  • Todeschini AR, Dias WB, Girard MF, Wieruszeski J, Mendonça-Previato L, Previato JO (2004) Enzimatically inactive trans-sialidase from T. cruzi infection. J. Biol. Chem. 275:32182–32186

    Google Scholar 

  • Tse YC, Kirkegaard K, Kang JC (1980) Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J Biol Chem. 255:5560–5565

    Article  CAS  PubMed  Google Scholar 

  • Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, McFadden GI, Currie G, Ferguson K, Bacic A, Mcconville MJ (2004) SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 15(11):4775–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler KM, Luxton GW, Applewhite DA, Murphy SC, Engman DM (2005) Responsive microtubule dynamics promote cell invasion by Trypanosoma cruzi. Cell Microbiol. 7:1579–1591

    Article  CAS  PubMed  Google Scholar 

  • Uehara LA, Moreira OC, Oliveira AC, Azambuja P, Lima AP, Britto C, Dos Santos AL, Branquinha MH, D’avila-Levy CM (2012) Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Negl Trop Dis. 6(12):e1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J 3rd, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SN, Orlando R, Docampo R (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6(3):e18013. https://doi.org/10.1371/journal.pone.0018013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbina JA (1994) Intermediary metabolism of Trypanosoma cruzi. Parasitol Today 10(3):107–110

    Article  CAS  PubMed  Google Scholar 

  • Vallejo GA, Guhl F, Schaub GA (2009) Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions. Acta Trop. 110(2–3):137–147. https://doi.org/10.1016/j.actatropica.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Van Hellemond JJ, Opperdoes FT, Tielens AG (2005) The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans. 33(5):967–971

    Article  PubMed  Google Scholar 

  • Vatarunakamura C, Ueda-Nakamura T, De Souza W (2005) Visualization of the cytostome in Trypanosoma cruzi by high resolution field emission scanning electron microscopy using secondary and backscattered electron imaging. FEMS Microbiol Lett 242(2):227–230

    Article  PubMed  CAS  Google Scholar 

  • Velasco JR, Adroher FJ, Osuna A (1990) In vitro survival of amastigote forms of Trypanosoma cruzi in media conditioned by Vero cells. Chemosphere 21(1–2):263–268

    Article  CAS  Google Scholar 

  • Vercesi AE, Bernardes CF, Hoffmann ME, Gadelha FR, Docampo R (1991) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 266(22):14431–14434

    Article  CAS  PubMed  Google Scholar 

  • Vercesi AE, Moreno SN, DoCampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 304:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal JC, Alcantara CL, De Souza W, Cunha-e-Silva NL (2016) Loss of the cytostome-cytopharynx and endocytic ability are late events in Trypanosoma cruzi metacyclogenesis. J Struct Biol 196(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Vidal JC, Alcantara CL, De Souza W, Cunha-e-Silva NL (2017) Lysosome-like compartments of Trypanosoma cruzi trypomastigotes may originate directly from epimastigote reservosomes. Parasitology 144(6):841–850

    Article  CAS  PubMed  Google Scholar 

  • Vieira MC, De Carvalho TMU, De Souza W (1994) Effect of protein kinase inhibitors on the invasion process of macrophages by Trypanososma cruzi. Biochem. Biophys. Res. Commun. 203:967–971

    Article  CAS  PubMed  Google Scholar 

  • Vieira LL, Lafuente E, Gamarro F, Cabantchik Z (1996) An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem J. 319:691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira CB, Praça YR, KLDS B, Santiago PB, SMM S, GDS S, Motta FN, IMD B, De Santana JM, De Araújo CN (2018) Triatomines: trypanosomatids, bacteria, and viruses potential vectors? Front Cell Infect Microbiol. 8:405

    Article  PubMed  PubMed Central  Google Scholar 

  • Volpini X, Ambrosio L, Fozzatti L, Insfran C, Stempin C, Cervi L, Votran C (2018) Trypanosoma cruzi exploits wnt signaling pathway to promote its intracellular replication in macrophages. Front Immunol. 9:859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waghabi MC, Bailly S, Degrave W, Mendonca-Lima L, Soeiro Mde N, Meirelles Mde N, Paciornik S, Araujo-Jorge TC, Feige JJ (2005) Uptake of host cell transforming growth factor-beta by Trypanosoma cruzi amastigotes in cardiomyocytes: potential role in parasite cycle completion. Am J Pathol 167(4):993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Pappas-Brown V, Englund PT, Jensen RE (2014) TbKAP6, a mitochondrial HMG box-containing protein in Trypanosoma brucei, Is the first trypanosomatid kinetoplast- associated protein essential for kinetoplast DNA replication and maintenance. Eukaryot Cell 13(7):919–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheeler RJ, Sunter JD, Gull K (2016) Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci. 129(4):854–867. https://doi.org/10.1242/jcs.183152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkowsky SE, Barbieri MA, Stahl PD, Isola ELD (2002) Regulation of Trypanosoma cruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin, Rab5, and Rab7. Biochem. Biophys. Res. Commun. 291:516–521

    Article  CAS  PubMed  Google Scholar 

  • Woodward R, Gull K (1990) Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci. 95:49–57

    Article  PubMed  Google Scholar 

  • Yelinek JT, He CY, Warren G (2009) Ultrastructural study of Golgi duplication in Trypanosoma brucei. Traffic 2009 10(3):300–306

    CAS  Google Scholar 

  • Zeuthen T (1992) From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. Biochim Biophys Acta 1113(2):229–258

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kumar P, Shah-Simpson S, Caradonna K, Galjart N, Teygong C, Blader I, Wittmann T, Burleigh BA (2013) Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process. Cell Microbiol. 15:571–584

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann D, Peters W, Schaub GA (1987) Differences in binding of lectin-gold conjugates by Trypanosoma cruzi and Blastocrithidia triatomae (Trypanosomatidae) in the intestine of Triatoma infestans (Reduviidae). Parasitol Res. 74(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Zingales B (2018) Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 184:38–52

    Article  CAS  PubMed  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12(2):240–253

    Article  PubMed  Google Scholar 

  • Zingales B, Araujo RG, Moreno M, Franco J, Aguiar PH, Nunes SL, Silva MN, Ienne S, Machado CR, Brandão A (2015) A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz 110(3):433–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuzarte-Luís V, Mota MM (2018) Parasite sensing of host nutrients and environmental cues. Cell Host Microbe. 23(6):749–758

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work carried out in the author’s laboratories have been supporte by grants form Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Financiadora de Estudos e Projetos-FINEP, and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrias, E., Zuma, A., de Souza, W. (2022). Life Cycle of Pathogenic Protists: Trypanosoma cruzi. In: de Souza, W. (eds) Lifecycles of Pathogenic Protists in Humans. Microbiology Monographs, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-80682-8_1

Download citation

Publish with us

Policies and ethics