Skip to main content

Intertwining of Retinoic Acid and Cholesterol Pathway and its Consequences in Leishmania donovani-Infected Macrophages

  • Chapter
  • First Online:
Pathobiology of Parasitic Protozoa: Dynamics and Dimensions
  • 203 Accesses

Abstract

Visceral leishmaniasis (VL) is the most severe disease among other forms of leishmaniasis and results in a fatality in more than 90% of cases if left untreated. It is a zoonotic disease caused by Leishmania donovani and is prevalent in the Indian subcontinent, affecting the population of poor socioeconomic backgrounds. People residing in endemic regions lacking proteins, iron, zinc, and vitamin A in their diet are more prone to develop this opportunist infection into a full-blown disease. The deficiency of a prominent micronutrient vitamin A favors the parasites to develop an infection in the human host, and WHO recommends 200,000 IU doses of vitamin A to VL patients on admission. Additionally, Leishmania entry to the host is favored by cholesterol present in the plasma membrane, and survival inside the host is achieved by utilizing host cholesterol as Leishmania and other trypanosomatids lack de novo synthesis of sterol. However, in our study, we have already reported that a deficit of retinoic acid (RA), a metabolite of vitamin A, favors the parasite to increase their number in L. donovani-infected macrophages by downregulating immune response. Along with this finding, we have also observed the restoration of cellular cholesterol levels in L. donovani-infected macrophages by RA. In this chapter, we have explained the connecting link between cholesterol and RA in visceral leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayi B. Leishmaniasis. xPharm Compr Pharmacol Ref: 1–10. 2007 https://doi.org/10.1016/B978-008055232-3.60933-X.

  2. Hughes AL, Piontkivska H. Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies. Kinetoplastid Biol Dis. 2003;2(1):1–10. https://doi.org/10.1186/1475-9292-2-15.

    Article  Google Scholar 

  3. Kevric I, Cappel MA, Keeling JH. New world and old world leishmania infections: a practical review. Dermatol Clin. 2015;33(3):579–93. https://doi.org/10.1016/j.det.2015.03.018.

    Article  CAS  Google Scholar 

  4. Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7(9):581–96. https://doi.org/10.1016/S1473-3099(07)70209-8.

    Article  Google Scholar 

  5. DNDi. Symptoms, transmission, and current treatments for visceral leishmaniasis | DNDi. 2022. https://dndi.org/diseases/visceral-leishmaniasis/facts/. Accessed 5 Jan 2022.

  6. Pucadyil TJ, Tewary P, Madhubala R, Chattopadhyay A. Cholesterol is required for leishmania donovani infection: implications in leishmaniasis. Mol Biochem Parasitol. 2004;133(2):145–52. https://doi.org/10.1016/j.molbiopara.2003.10.002.

    Article  CAS  Google Scholar 

  7. Gerber LE, Erdman JW. Changes in lipid metabolism during retinoid administration. J Am Acad Dermatol. 1982;6(4):664–72. https://doi.org/10.1016/S0190-9622(82)80047-9.

    Article  CAS  Google Scholar 

  8. Jie Z, Liang Y, Yi P, Tang H, Soong L, Cong Y, Zhang K, Sun J. Retinoic acid regulates immune responses by promoting IL-22 and modulating S100 proteins in viral hepatitis. J Immunol. 2017;198(9):3448–60. https://doi.org/10.4049/jimmunol.1601891.

    Article  CAS  Google Scholar 

  9. Prakash S, Saini S, Kumari S, Singh B, Kureel AK, Rai AK. Retinoic acid restores the levels of cellular cholesterol in leishmania donovani infected macrophages by increasing npc1 and npc2 expressions. Biochimie. 2022;198:23–32. https://doi.org/10.1016/J.BIOCHI.2022.03.002.

    Article  CAS  Google Scholar 

  10. Bansal D, Bhatti HS, Sehgal R. Role of cholesterol in parasitic infections. Lipids Health Dis. 2005;4:1–7. https://doi.org/10.1186/1476-511X-4-10.

    Article  CAS  Google Scholar 

  11. Melchionda F, Varani S, Carfagnini F, Belotti T, Di Muccio T, Tigani R, Bergamaschi R, Pession A. Spleen nodules: a potential hallmark of visceral leishmaniasis in young children. BMC Infect Dis. 2014;14(1):1–5. https://doi.org/10.1186/s12879-014-0620-2.

    Article  Google Scholar 

  12. WHO (2022) Leishmaniasis: World Health Organization. https://www.who.int/health-topics/leishmaniasis#tab=tab_1. Accessed 5 Jan 2022.

  13. Kumar V, Mandal R, Das S, Kesari S, Dinesh DS, Pandey K, Das VR, Topno RK, Sharma MP, Dasgupta RK, Das P. Kala-azar elimination in a highly-endemic district of Bihar, India: a success story. PLoS Negl Trop Dis. 2020;14(5):e0008254. https://doi.org/10.1371/JOURNAL.PNTD.0008254.

    Article  CAS  Google Scholar 

  14. NVBDCP (2022) Kala-azar: National Vector Borne Disease Control Programme (NVBDCP). In: NVBDCP. https://nvbdcp.gov.in/index1.php?lang=1&level=1&sublinkid=5774&lid=3692. Accessed 5 Jan 2022.

  15. Saini P, Kumar NP, Ajithlal PM, Joji A, Rajesh KR, Reena KJ, Kumar A. Visceral leishmaniasis caused by leishmania donovani zymodeme MON-37, Western Ghats. India Emerg Infect Dis. 2020;26(8):1956. https://doi.org/10.3201/EID2608.200557.

    Article  Google Scholar 

  16. Andrade-Narvaez FJ, Canto Lara SB, Van Wynsberghe NR, Rebollar-Tellez EA, Vargas A, Albertos-Alpuche NE. Seasonal transmission of Leishmania (Leishmania) mexicana in the state of Campeche, Yucatan Peninsula, Mexico. Mem Inst Oswaldo Cruz. 2003;98(8):995–8. https://doi.org/10.1590/S0074-02762003000800002.

    Article  Google Scholar 

  17. Van Wynsberghe NR, Canto-Lara SB, Sosa-Bibiano EI, Rivero-Cárdenas NA, Andrade-Narváez FJ. Comparison of small mammal prevalence of Leishmania (Leishmania) mexicana in five foci of cutaneous leishmaniasis in the State of Campeche, Mexico. Rev Inst Med Trop Sao Paulo. 2009;51(2):87–94. https://doi.org/10.1590/S0036-46652009000200006.

    Article  Google Scholar 

  18. Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors. 2012;5(1):1–12. https://doi.org/10.1186/1756-3305-5-276.

    Article  CAS  Google Scholar 

  19. Sacks DL. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol. 1989;69(1):100–3. https://doi.org/10.1016/0014-4894(89)90176-8.

    Article  CAS  Google Scholar 

  20. Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG. Sequential blood meals promote leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol. 2018;3(5):548–55. https://doi.org/10.1038/s41564-018-0125-7.

    Article  CAS  Google Scholar 

  21. Abdian N, Gholami E, Zahedifard F, Safaee N, Rafati S. Evaluation of DNA/DNA and prime-boost vaccination using LPG3 against leishmania major infection in susceptible BALB/c mice and its antigenic properties in human leishmaniasis. Exp Parasitol. 2011;127(3):627–36. https://doi.org/10.1016/J.EXPPARA.2010.12.007.

    Article  CAS  Google Scholar 

  22. John TJ, Dandona L, Sharma VP, Kakkar M. Continuing challenge of infectious diseases in India. Lancet. 2011;377(9761):252–69. https://doi.org/10.1016/S0140-6736(10)61265-2.

    Article  Google Scholar 

  23. Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, Sinha PK, Rijal S, Mondal D, Zilberstein D, Alvar J. Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis. 2011;11(4):322–5. https://doi.org/10.1016/S1473-3099(10)70320-0.

    Article  Google Scholar 

  24. Stockdale L, Newton R. A review of preventative methods against human leishmaniasis infection. PLoS Negl Trop Dis. 2013;7(6):e2278. https://doi.org/10.1371/JOURNAL.PNTD.0002278.

    Article  Google Scholar 

  25. CDC. Leishmaniasis: Centers for Disease Control and Prevention. 2022. https://www.cdc.gov/parasites/leishmaniasis/. Accessed 5 Jan 2022.

  26. Mitra AK, Mawson AR. Neglected tropical diseases: epidemiology and global burden. Trop med. Infect Dis. 2017;2:3. https://doi.org/10.3390/tropicalmed2030036.

    Article  Google Scholar 

  27. Rosenberg M, Utzinger J, Addiss DG. Preventive chemotherapy versus innovative and intensified disease management in neglected tropical diseases: a distinction whose shelf life has expired. PLoS Negl Trop Dis. 2016;10(4):e0004521. https://doi.org/10.1371/JOURNAL.PNTD.0004521.

    Article  Google Scholar 

  28. Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin Microbiol Rev. 2014;27(4):949–79. https://doi.org/10.1128/CMR.00045-14.

    Article  CAS  Google Scholar 

  29. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team the WLC. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. https://doi.org/10.1371/JOURNAL.PONE.0035671.

    Article  CAS  Google Scholar 

  30. Bern C, Maguire JH, Alvar J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl Trop Dis. 2008;2(10):e313. https://doi.org/10.1371/JOURNAL.PNTD.0000313.

    Article  Google Scholar 

  31. Burza S, Croft SL, Boelaert M. Leishmaniasis Lancet. 2018;392(10151):951–70. https://doi.org/10.1016/S0140-6736(18)31204-2.

    Article  Google Scholar 

  32. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366(9496):1561–77. https://doi.org/10.1016/S0140-6736(05)67629-5.

    Article  CAS  Google Scholar 

  33. Silva-Jardim I, Thiemann OH, Anibal FF. Leishmaniasis and chagas disease chemotherapy: a critical review. J Braz Chem Soc. 2014;25(10):1810–23. https://doi.org/10.5935/0103-5053.20140229.

    Article  CAS  Google Scholar 

  34. Kip AE, Schellens JHM, Beijnen JH, Dorlo TPC. Clinical pharmacokinetics of systemically administered antileishmanial drugs. Clin Pharmacokinet. 2018;57(2):151–76. https://doi.org/10.1007/s40262-017-0570-0.

    Article  CAS  Google Scholar 

  35. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis. 2017;11(12):1–24. https://doi.org/10.1371/journal.pntd.0006052.

    Article  CAS  Google Scholar 

  36. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111–26. https://doi.org/10.1128/CMR.19.1.111-126.2006.

    Article  CAS  Google Scholar 

  37. Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL. Visceral leishmaniasis treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist. 2012;2:11–9. https://doi.org/10.1016/j.ijpddr.2012.01.003.

    Article  CAS  Google Scholar 

  38. Monge-Maillo B, López-Vélez R. Therapeutic options for visceral leishmaniasis. Drugs. 2013;73(17):1863–88. https://doi.org/10.1007/s40265-013-0133-0.

    Article  CAS  Google Scholar 

  39. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol. 2003;126(2):129–42. https://doi.org/10.1016/S0166-6851(02)00280-3.

    Article  CAS  Google Scholar 

  40. Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis. 2010;2(2):159–66. https://doi.org/10.4103/0974-777X.62886.

    Article  Google Scholar 

  41. Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, Kumar PCK, Murray HW. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the Center of the Indian Epidemic. Clin Infect Dis. 2000;31(4):1104–7. https://doi.org/10.1086/318121.

    Article  CAS  Google Scholar 

  42. Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–97. https://doi.org/10.1093/jac/dks275.

    Article  CAS  Google Scholar 

  43. Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite. 2011;18(2):115–9. https://doi.org/10.1051/parasite/2011182115.

    Article  CAS  Google Scholar 

  44. Pérez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martínez-García M, López-Martín C, Campillo M, Castanys S, Gamarro F. Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother. 2011;55(8):3838–44. https://doi.org/10.1128/AAC.00065-11.

    Article  CAS  Google Scholar 

  45. Neves LO, Talhari AC, Gadelha EPN, da Silva Júnior RM, Guerra JADO, Ferreira LCDL, Talhari S. A randomized clinical trial comparing meglumine antimoniate, pentamidine and amphotericin B for the treatment of cutaneous leishmaniasis by Leishmania guyanensis. An Bras Dermatol. 2011;86(6):1092–101. https://doi.org/10.1590/S0365-05962011000600005.

    Article  Google Scholar 

  46. Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, Andrade CA. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011;118(2):87–96. https://doi.org/10.1016/J.ACTATROPICA.2011.02.007.

    Article  CAS  Google Scholar 

  47. Alvar J, Croft S, Olliaro P. Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol. 2006;61:223–74. https://doi.org/10.1016/S0065-308X(05)61006-8.

    Article  Google Scholar 

  48. Meheus F, Balasegaram M, Olliaro P, Sundar S, Rijal S, Faiz MA, Boelaert M. Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis. 2010;4(9):e818. https://doi.org/10.1371/JOURNAL.PNTD.0000818.

    Article  Google Scholar 

  49. Sundar S, Sinha PK, Rai M, Verma DK, Nawin K, Alam S, Chakravarty J, Vaillant M, Verma N, Pandey K, Kumari P, Lal CS, Arora R, Sharma B, Ellis S, Strub-Wourgaft N, Balasegaram M, Olliaro P, Das P, Modabber F. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377(9764):477–86. https://doi.org/10.1016/S0140-6736(10)62050-8.

    Article  CAS  Google Scholar 

  50. Seifert K, Croft SL. In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob Agents Chemother. 2006;50(1):73–9. https://doi.org/10.1128/AAC.50.1.73-79.2006.

    Article  CAS  Google Scholar 

  51. Bimal S, Sinha S, Singh SK, Narayan S, Kumar V, Verma N, Ranjan A, Sinha PK, Das VNR, Pandey K, Kar SK, Das P. Leishmania donovani: CD2 biased immune response skews the SAG mediated therapy for a predominant Th1 response in experimental infection. Exp Parasitol. 2012;131(3):274–82. https://doi.org/10.1016/J.EXPPARA.2012.04.007.

    Article  CAS  Google Scholar 

  52. Shakya N, Sane SA, Vishwakarma P, Bajpai P, Gupta S. Improved treatment of visceral leishmaniasis (kala-azar) by using combination of ketoconazole, miltefosine with an immunomodulator-Picroliv. Acta Trop. 2011;119(2–3):188–93. https://doi.org/10.1016/j.actatropica.2011.05.017.

    Article  CAS  Google Scholar 

  53. van Griensven J, Balasegaram M, Meheus F, Alvar J, Lynen L, Boelaert M. Combination therapy for visceral leishmaniasis. Lancet Infect Dis. 2010;10(3):184–94. https://doi.org/10.1016/S1473-3099(10)70011-6.

    Article  Google Scholar 

  54. Atia AM, Mumina A, Tayler-Smith K, Boulle P, Alcoba G, Elhag MS, Alnour M, Shah S, Chappuis F, van Griensven J, Zachariah R. Sodium stibogluconate and paromomycin for treating visceral leishmaniasis under routine conditions in eastern Sudan. Trop Med Int Health. 2015;20(12):1674–84. https://doi.org/10.1111/TMI.12603.

    Article  CAS  Google Scholar 

  55. Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci. 2013;71(7):1245–63. https://doi.org/10.1007/S00018-013-1491-1.

    Article  Google Scholar 

  56. Kumar R, Nylén S. Immunobiology of visceral leishmaniasis. Front Immunol. 2012;3(AUG):1–10. https://doi.org/10.3389/fimmu.2012.00251.

    Article  CAS  Google Scholar 

  57. Smelt SC, Engwerda CR, McCrossen M, Kaye PM. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol. 1997;158:8.

    Article  Google Scholar 

  58. Wilson ME, Streit JA. Visceral leishmaniasis. Gastroenterol Clin N Am. 1996;25(3):535–51. https://doi.org/10.1016/S0889-8553(05)70262-4.

    Article  CAS  Google Scholar 

  59. Wilson ME, Jeronimo SMB, Pearson RD. Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog. 2005;38(4):147–60. https://doi.org/10.1016/j.micpath.2004.11.002.

    Article  CAS  Google Scholar 

  60. Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol. 2004;20(11):524–30. https://doi.org/10.1016/j.pt.2004.08.009.

    Article  CAS  Google Scholar 

  61. Beattie L, Peltan A, Maroof A, Kirby A, Brown N, Coles M, Smith DF, Kaye PM. Dynamic imaging of experimental leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8+ T cells. PLoS Pathog. 2010;6(3):e1000805. https://doi.org/10.1371/JOURNAL.PPAT.1000805.

    Article  Google Scholar 

  62. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3(2):785–97. https://doi.org/10.1002/CPHY.C120026.

    Article  Google Scholar 

  63. McGovern K, Wilson E. Role of chemokines and trafficking of immune cells in parasitic infections. Curr Immunol Rev. 2014;9(3):157–68. https://doi.org/10.2174/1573395509666131217000000.

    Article  CAS  Google Scholar 

  64. McFarlane E, Perez C, Charmoy M, Allenbach C, Carter KC, Alexander J, Tacchini-Cottier F. Neutrophils contribute to development of a protective immune response during onset of infection with Leishmania donovani. Infect Immun. 2008;76(2):532–41. https://doi.org/10.1128/IAI.01388-07.

    Article  CAS  Google Scholar 

  65. Merida-De-Barros DA, Chaves SP, Belmiro CLR, Wanderley JLM. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy? 11 medical and health sciences 1108 medical microbiology 06 biological sciences 0601 biochemistry and cell biology. Parasit Vectors. 2018;11(1):1–12. https://doi.org/10.1186/s13071-018-2953-y.

    Article  CAS  Google Scholar 

  66. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08.

    Article  CAS  Google Scholar 

  67. Gregory DJ, Sladek R, Olivier M, Matlashewski G. Comparison of the effects of Leishmania major or Leishmania donovani infection on macrophage gene expression. Infect Immun. 2008;76(3):1186–92. https://doi.org/10.1128/IAI.01320-07.

    Article  CAS  Google Scholar 

  68. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37. https://doi.org/10.1097/AIA.0B013E318034194E.

    Article  CAS  Google Scholar 

  69. Andargie TE, Diro Ejara E. Pro- and anti-inflammatory cytokines in visceral leishmaniasis. J Cell Sci Ther. 2016;06:02. https://doi.org/10.4172/2157-7013.1000206.

    Article  CAS  Google Scholar 

  70. Cavaillon J. Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-Grand). 2001;47(4):695–702.

    CAS  Google Scholar 

  71. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Foon ST, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science (80- ). 2007;318(5854):1258–65. https://doi.org/10.1126/SCIENCE.1150577.

    Article  CAS  Google Scholar 

  72. Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2019;21(4):225–45. https://doi.org/10.1038/s41580-019-0190-7.

    Article  CAS  Google Scholar 

  73. Wong LH, Gatta AT, Levine TP. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol. 2018;20(2):85–101. https://doi.org/10.1038/s41580-018-0071-5.

    Article  CAS  Google Scholar 

  74. Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through Rab11. 2007;18(7):2667–77. https://doi.org/10.1091/MBC.E06-10-0924.

  75. Coxey R, Pentchev P, Campbell G, Blanchette-Mackie E. Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J Lipid Res. 1993;34(7):1165–76. https://doi.org/10.1016/S0022-2275(20)37704-X.

    Article  CAS  Google Scholar 

  76. Mukherjee S, Zha X, Tabas I, Maxfield FR. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75(4):1915–25. https://doi.org/10.1016/S0006-3495(98)77632-5.

    Article  CAS  Google Scholar 

  77. Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J Lipid Res. 1991;32(2):329–39. https://doi.org/10.1016/S0022-2275(20)42093-0.

    Article  CAS  Google Scholar 

  78. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124(1):35–46. https://doi.org/10.1016/J.CELL.2005.12.022.

    Article  CAS  Google Scholar 

  79. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003;5(9):781–92. https://doi.org/10.1038/ncb1035.

    Article  CAS  Google Scholar 

  80. Ridsdale A, Denis M, Gougeon P-Y, Ngsee JK, Presley JF, Zha X. Cholesterol is required for efficient endoplasmic reticulum-to-golgi transport of secretory membrane. Proteins. 2006;17(4):1593–605. https://doi.org/10.1091/MBC.E05-02-0100.

    Article  CAS  Google Scholar 

  81. Runz H, Miura K, Weiss M, Pepperkok R. Sterols regulate ER-export dynamics of secretory cargo protein ts-O45-G. EMBO J. 2006;25(13):2953–65. https://doi.org/10.1038/SJ.EMBOJ.7601205.

    Article  CAS  Google Scholar 

  82. Nohturfft A, Brown MS, Goldstein JL. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc Natl Acad Sci. 1998;95(22):12848–53. https://doi.org/10.1073/PNAS.95.22.12848.

    Article  CAS  Google Scholar 

  83. Sun L-P, Li L, Goldstein JL, Brown MS. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro*♦. J Biol Chem. 2005;280(28):26483–90. https://doi.org/10.1074/JBC.M504041200.

    Article  CAS  Google Scholar 

  84. Miller E, Antonny B, Hamamoto S, Schekman R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 2002;21(22):6105–13. https://doi.org/10.1093/EMBOJ/CDF605.

    Article  CAS  Google Scholar 

  85. Simons K, Vaz WLC. Model systems, lipid rafts, and cell membranes 1. Annu Rev Biophys Biomol Struct. 2004;33:269–95. https://doi.org/10.1146/ANNUREV.BIOPHYS.32.110601.141803.

    Article  CAS  Google Scholar 

  86. Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci. 1995;92(22):10339–43. https://doi.org/10.1073/PNAS.92.22.10339.

    Article  CAS  Google Scholar 

  87. Radhakrishnan A, Sun L-P, Kwon HJ, Brown MS, Goldstein JL. Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell. 2004;15(2):259–68. https://doi.org/10.1016/J.MOLCEL.2004.06.019.

    Article  CAS  Google Scholar 

  88. Tewary P, Veena K, Pucadyil TJ, Chattopadhyay A, Madhubala R. The sterol-binding antibiotic nystatin inhibits entry of non-opsonized Leishmania donovani into macrophages. Biochem Biophys Res Commun. 2006;339(2):661–6. https://doi.org/10.1016/J.BBRC.2005.11.062.

    Article  CAS  Google Scholar 

  89. Rodríguez NE, Gaur U, Wilson ME. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol. 2006;8(7):1106–20. https://doi.org/10.1111/J.1462-5822.2006.00695.X.

    Article  Google Scholar 

  90. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18(2):293–305. https://doi.org/10.1128/CMR.18.2.293-305.2005.

    Article  CAS  Google Scholar 

  91. Chakraborty D, Banerjee S, Sen A, Banerjee KK, Das P, Roy S. Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. J Immunol. 2005; https://doi.org/10.4049/jimmunol.175.5.3214.

  92. Sen E, Chattopadhyay S, Bandopadhyay S, De T, Roy S. Macrophage heterogeneity, antigen presentation, and membrane fluidity: implications in visceral leishmaniasis. Scand J Immunol. 2001;53(2):111–20. https://doi.org/10.1046/J.1365-3083.2001.00856.X.

    Article  CAS  Google Scholar 

  93. Mouritsen OG, Zuckermann MJ. What’s so special about cholesterol? Lipids. 2004;39(11):1101–13. https://doi.org/10.1007/S11745-004-1336-X.

    Article  CAS  Google Scholar 

  94. Pucadyil TJ, Chattopadhyay A. Cholesterol: a potential therapeutic target in leishmania infection? Trends Parasitol. 2007;23(2):49–53. https://doi.org/10.1016/j.pt.2006.12.003.

    Article  CAS  Google Scholar 

  95. Alemayehu B, Alemayehu M. Leishmaniasis: a review on parasite, vector and reservoir host. Health Sci J. 2017;11(4):1–6. https://doi.org/10.21767/1791-809x.1000519.

    Article  Google Scholar 

  96. Bailey MS, Lockwood DNJ. Cutaneous leishmaniasis. Clin Dermatol. 2007;25(2):203–11. https://doi.org/10.1016/J.CLINDERMATOL.2006.05.008.

    Article  Google Scholar 

  97. Killick-Kendrick R. The biology and control of Phlebotomine sand flies. Clin Dermatol. 1999;17(3):279–89. https://doi.org/10.1016/S0738-081X(99)00046-2.

    Article  CAS  Google Scholar 

  98. Nylén S, Eidsmo L. Tissue damage and immunity in cutaneous leishmaniasis. Parasite Immunol. 2012;34(12):551–61. https://doi.org/10.1111/PIM.12007.

    Article  Google Scholar 

  99. Vannier-Santos M, Martiny A, Souza W. Cell biology of leishmania spp.: invading and evading. Curr Pharm Des. 2005;8(4):297–318. https://doi.org/10.2174/1381612023396230.

    Article  Google Scholar 

  100. Gomes CMC, Giannella-Neto D, Gama MEA, Pereira JCR, Campos MB, Corbett CEP. Correlation between the components of the insulin-like growth factor I system, nutritional status and visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2007;101(7):660–7. https://doi.org/10.1016/J.TRSTMH.2007.02.017.

    Article  CAS  Google Scholar 

  101. Pearson RD, Cox G, Jeronimo SMB, Castracane J, Drew JS, Evans T, Alencar JED. Visceral leishmaniasis: a model for infection-induced cachexia. Am J Trop Med Hyg. 1992;47(1_Suppl):8–15. https://doi.org/10.4269/AJTMH.1992.47.8.

    Article  CAS  Google Scholar 

  102. Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol. 2015;

    Google Scholar 

  103. Das BC, Thapa P, Karki R, Das S, Mahapatra S, Liu TC, Torregroza I, Wallace DP, Kambhampati S, Van Veldhuizen P, Verma A, Ray SK, Evans T. Retinoic acid signaling pathways in development and diseases. Bioorganic Med Chem. 2014;

    Google Scholar 

  104. Gilbert C. What is vitamin a and why do we need it? Community Eye Health. 2013;26(84):65.

    Google Scholar 

  105. MacDonald PN, Ong DE. A lecithin: retinol acyltransferase activity in human and rat liver. Biochem Biophys Res Commun. 1988;156(1):157–63. https://doi.org/10.1016/S0006-291X(88)80818-0.

    Article  CAS  Google Scholar 

  106. Pawlikowski B, Wragge J, Siegenthaler JA. Retinoic acid signaling in vascular development. Genesis. 2019;57(7–8):e23287. https://doi.org/10.1002/DVG.23287.

    Article  Google Scholar 

  107. Rhinn M, Dollé P. Retinoic acid signalling during development. Development. 2012;139(5):843–58. https://doi.org/10.1242/dev.065938.

    Article  CAS  Google Scholar 

  108. Kai-rong T, Andrew WN, Chan-Lan Sun L, Ellen L. The isolation and characterization of purified heterocomplexes of recombinant retinoic acid receptor and retinoid X receptor ligand binding domains†. Biochemistry. 1997;36(19):5669–76. https://doi.org/10.1021/BI9627020.

    Article  CAS  Google Scholar 

  109. Saurat J-H. Retinoids and psoriasis: novel issues in retinoid pharmacology and implications for psoriasis treatment. J Am Acad Dermatol. 1999;41(3):S2–6. https://doi.org/10.1016/S0190-9622(99)70358-0.

    Article  CAS  Google Scholar 

  110. Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327–48. https://doi.org/10.2147/ciia.2006.1.4.327.

    Article  CAS  Google Scholar 

  111. Pechère M, Pechère JC, Siegenthaler G, Germanier L, Saurat JH. Antibacterial activity of retinaldehyde against propionibacterium acnes. Dermatology. 1999;199(SUPPL. 1):29–31. https://doi.org/10.1159/000051375.

    Article  Google Scholar 

  112. Thielitz A, Abdel-Naser MB, Fluhr JW, Zouboulis CC, Gollnick H. Topical retinoids in acne—an evidence-based overview. JDDG J der Dtsch Dermatologischen Gesellschaft. 2008;6(12):1023–31. https://doi.org/10.1111/J.1610-0387.2008.06741.X.

    Article  Google Scholar 

  113. Wu K, Kim H-T, Rodriquez JL, Munoz-Medellin D, Mohsin SK, Hilsenbeck SG, Lamph WW, Gottardis MM, Shirley MA, Kuhn JG, Green JE, Brown PH. 9-cis-retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin Cancer Res. 2000;6:9.

    Google Scholar 

  114. Christov KT, Moon RC, Lantvit DD, Boone CW, Steele VE, Lubet RA, Kelloff GJ, Pezzuto JM. 9-cis-retinoic acid but not 4-(hydroxyphenyl)retinamide inhibits prostate intraepithelial neoplasia in noble rats. Cancer Res. 2002;62:18.

    Google Scholar 

  115. Baumann L, Vujevich J, Halem M, Martin LK, Kerdel F, Lazarus M, Pacheco H, Black L, Bryde J. Open-label pilot study of alitretinoin gel 0.1% in the treatment of photoaging. Cutis. 2005;76(1):69–73.

    Google Scholar 

  116. Sano K, Takayama T, Murakami K, Saiki I, Makuuchi M. Overexpression of retinoic acid receptor α in hepatocellular carcinoma. Clin Cancer Res. 2003;9(10):3679–83.

    CAS  Google Scholar 

  117. Sako T, Nakayama Y, Minagawa N, Inoue Y, Onitsuka K, Katsuki T, Tsurudome Y, Shibao K, Hirata K, Nagata N, Ohie S, Kohno K, Itoh H. 4-[3,5-bis(trimethylsilyl)benzamido] benzoic acid (TAC-101) induces apoptosis in colon cancer partially through the induction of fas expression. In Vivo (Brooklyn). 2005;19(1):125–32.

    CAS  Google Scholar 

  118. Duvic M, Hymes K, Heald P, Breneman D, Martin AG, Myskowski P, Crowley C, Yocum RC, Group for M of the BWS. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19(9):2456–71. https://doi.org/10.1200/JCO.2001.19.9.2456.

    Article  CAS  Google Scholar 

  119. Sun S-Y, Yue P, Kelloff GJ, Steele VE, Lippman SM, Hong WK, Lotan R. Identification of retinamides that are more potent than N-(4-hydroxyphenyl)retinamide in inhibiting growth and inducing apoptosis of human head and neck and lung cancer cells. Cancer Epidemiol Prev Biomarkers. 2001;10:6.

    Google Scholar 

  120. Appleyard VCL, O’Neill MA, Murray KE, Bray SE, Thomson G, Kernohan NM, Varani J, Zhang J, Thompson AM. Activity of MDI-301, a novel synthetic retinoid, in xenografts. Anti-Cancer Drugs. 2004;15(10):991–6. https://doi.org/10.1097/00001813-200411000-00009.

    Article  CAS  Google Scholar 

  121. Warner RL, Bhagavathula N, Nerusu K, Hanosh A, McClintock SD, Naik MK, Johnson KJ, Ginsburg I, Varani J. MDI 301, a nonirritating retinoid, improves abrasion wound healing in damaged/atrophic skin. Wound Repair Regen. 2008;16(1):117–24. https://doi.org/10.1111/J.1524-475X.2007.00338.X.

    Article  Google Scholar 

  122. Brennan BJ, Brown AB, Kolis SJ, Rutman O, Gooden C, Davies BE. Effect of R667, a novel emphysema agent, on the pharmacokinetics of midazolam in healthy men. J Clin Pharmacol. 2006;46(2):222–8. https://doi.org/10.1177/0091270005283836.

    Article  CAS  Google Scholar 

  123. Miwako I, Kagechika H. Tamibarotene. Drugs Today. 2007;43(8):563–8. https://doi.org/10.1358/DOT.2007.43.8.1072615.

    Article  CAS  Google Scholar 

  124. Kawahara K, Nishi K, Suenobu M, Ohtsuka H, Maeda A, Nagatomo K, Kuniyasu A, Staufenbiel M, Nakagomi M, Shudo K, Nakayama H. Oral administration of synthetic retinoid Am80 (tamibarotene) decreases brain β-amyloid peptides in APP23 mice. Biol Pharm Bull. 2009;32(7):1307–9. https://doi.org/10.1248/BPB.32.1307.

    Article  CAS  Google Scholar 

  125. Kwak SH, Nam G-S, Bae SH, Jung J. Effect of specific retinoic acid receptor agonists on noise-induced hearing loss. Int J Environ Res Public Health. 2019;16:3428. https://doi.org/10.3390/IJERPH16183428.

    Article  CAS  Google Scholar 

  126. Khorana HG. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem. 1992;267(1):1–4. https://doi.org/10.1016/S0021-9258(18)48444-X.

    Article  CAS  Google Scholar 

  127. Cvekl A, Wang WL. Retinoic acid signaling in mammalian eye development. Exp Eye Res. 2009;89(3):280–91. https://doi.org/10.1016/j.exer.2009.04.012.

    Article  CAS  Google Scholar 

  128. Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation: thematic review series: fat-soluble vitamins: vitamin A. J Lipid Res. 2013;54(7):1744–60. https://doi.org/10.1194/JLR.R037028.

    Article  CAS  Google Scholar 

  129. Parker RO, Crouch RK. Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res. 2010;91(6):788–92. https://doi.org/10.1016/J.EXER.2010.08.013.

    Article  CAS  Google Scholar 

  130. Petkovich PM. Retinoic acid metabolism. J Am Acad Dermatol. 2001;45(5):S136–42. https://doi.org/10.1067/MJD.2001.113715.

    Article  CAS  Google Scholar 

  131. Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66(7):606–30. https://doi.org/10.1002/NEU.20242.

    Article  CAS  Google Scholar 

  132. Dong D, Ruuska SE, Levinthal DJ, Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating Signaling by retinoic acid *. J Biol Chem. 1999;274(34):23695–8. https://doi.org/10.1074/JBC.274.34.23695.

    Article  CAS  Google Scholar 

  133. Napoli JL. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol. 1996;80(3):S52–62. https://doi.org/10.1006/CLIN.1996.0142.

    Article  CAS  Google Scholar 

  134. Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 2010;67(9):1423–45. https://doi.org/10.1007/S00018-010-0268-Z.

    Article  CAS  Google Scholar 

  135. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992;68(2):397–406. https://doi.org/10.1016/0092-8674(92)90479-V.

    Article  CAS  Google Scholar 

  136. Mangelsdorf DJ, Evanst RM. The RXR heterodimers and orphan receptors. Cell. 1995;83:841–50.

    Article  CAS  Google Scholar 

  137. Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal. 2009;7:e005. https://doi.org/10.1621/NRS.07005.

    Article  Google Scholar 

  138. Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med. 2005;353(6):604–15. https://doi.org/10.1056/NEJMRA043590.

    Article  CAS  Google Scholar 

  139. Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin a and retinoid signaling: genomic and nongenomic effects. J Lipid Res. 2013;54(7):1761–75. https://doi.org/10.1194/jlr.R030833.

    Article  CAS  Google Scholar 

  140. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328(1–2):1–16. https://doi.org/10.1016/J.GENE.2003.12.005.

    Article  CAS  Google Scholar 

  141. Cotnoir-White D, Laperrière D, Mader S. Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol Cell Endocrinol. 2011;334(1–2):76–82. https://doi.org/10.1016/J.MCE.2010.10.021.

    Article  CAS  Google Scholar 

  142. Verma P, Kureel AK, Saini S, Prakash S, Kumari S, Kottarath SK, Srivastava SK, Bhat M, Dinda AK, Thakur CP, Sharma S, Rai AK. Leishmania donovani reduces the levels of retinoic acid–synthesizing enzymes in infected macrophages and favoring its own survival. Parasitol Res. 2018;118(1):63–71. https://doi.org/10.1007/S00436-018-6115-0.

    Article  Google Scholar 

  143. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21. https://doi.org/10.1038/nri3520.

    Article  CAS  Google Scholar 

  144. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289(35):24020–9. https://doi.org/10.1074/jbc.R114.583658.

    Article  CAS  Google Scholar 

  145. Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. 2009;6(7):455–63. https://doi.org/10.1038/nrcardio.2009.94.

    Article  Google Scholar 

  146. Klappacher GW, Glass CK. Roles of peroxisome proliferator-activated receptor γ in lipid homeostasis and inflammatory responses of macrophages. Curr Opin Lipidol. 2002;13(3):305–12.

    Article  CAS  Google Scholar 

  147. Gelissen IC, Harris M, Rye K-A, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W. ABCA1 and ABCG1 synergize to mediate cholesterol export to ApoA-I. Arterioscler Thromb Vasc Biol. 2006;26(3):534–40. https://doi.org/10.1161/01.ATV.0000200082.58536.E1.

    Article  CAS  Google Scholar 

  148. Hara H, Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991;266(5):3080–6. https://doi.org/10.1016/S0021-9258(18)49957-7.

    Article  CAS  Google Scholar 

  149. Kennedy MA, Barrera GC, Nakamura K, Baldán Á, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005;1(2):121–31. https://doi.org/10.1016/J.CMET.2005.01.002.

    Article  CAS  Google Scholar 

  150. Nakamura K, Kennedy MA, Baldán A, Bojanic DD, Lyons K, Edwards PA. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein *. J Biol Chem. 2004;279(44):45980–9. https://doi.org/10.1074/JBC.M408652200.

    Article  CAS  Google Scholar 

  151. Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci. 2011;108(49):19719–24. https://doi.org/10.1073/PNAS.1113021108.

    Article  CAS  Google Scholar 

  152. Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci. 2004;101(26):9774–9. https://doi.org/10.1073/PNAS.0403506101.

    Article  CAS  Google Scholar 

  153. Ayaori M, Yakushiji E, Ogura M, Nakaya K, Hisada T, Uto-Kondo H, Takiguchi S, Terao Y, Sasaki M, Komatsu T, Iizuka M, Yogo M, Uehara Y, Kagechika H, Nakanishi T, Ikewaki K. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 2012;1821(4):561–72. https://doi.org/10.1016/J.BBALIP.2012.02.004.

    Article  CAS  Google Scholar 

  154. Zhang Y, Beyer TP, Bramlett KS, Yao S, Burris TP, Schmidt RJ, Eacho PI, Cao G. Liver X receptor and retinoic X receptor mediated ABCA1 regulation and cholesterol efflux in macrophage cells—messenger RNA measured by branched DNA technology. Mol Genet Metab. 2002;77(1–2):150–8. https://doi.org/10.1016/S1096-7192(02)00111-7.

    Article  CAS  Google Scholar 

  155. Zhou W, Lin J, Chen H, Wang J, Liu Y, Xia M. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Br J Nutr. 2015;114(4):509–18. https://doi.org/10.1017/S0007114515002159.

    Article  CAS  Google Scholar 

  156. Maciel BLL, Valverde JG, Rodrigues-Neto JF, Freire-Neto F, Keesen TSL, Jeronimo SMB. Dual immune modulatory effect of vitamin a in human visceral leishmaniasis. PLoS One. 2014;9:9. https://doi.org/10.1371/journal.pone.0107564.

    Article  CAS  Google Scholar 

  157. Vellozo NS, Pereira-Marques ST, Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis GA, Lopes MF. All-trans retinoic acid promotes an M1-to M2-phenotype shift and inhibits macrophage-mediated immunity to Leishmania major. Front Immunol. 2017;8(NOV) https://doi.org/10.3389/fimmu.2017.01560.

  158. Pino-Lagos K, Guo Y, Noelle RJ. Retinoic acid: a key player in immunity. Biofactors. 2010;36(6):430–6. https://doi.org/10.1002/BIOF.117.

    Article  CAS  Google Scholar 

  159. Chen J, Costa LG, Guizzetti M. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects. J Pharmacol Exp Ther. 2011;338(3):870–8. https://doi.org/10.1124/jpet.111.182196.

    Article  CAS  Google Scholar 

  160. He Y, Gong L, Fang Y, Zhan Q, Liu HX, Lu Y, Guo GL, Lehman-McKeeman L, Fang J, Wan YJY. The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling. BMC Genomics. 2013;14(1):1. https://doi.org/10.1186/1471-2164-14-575.

    Article  CAS  Google Scholar 

  161. Prakash S, Kumar Rai A. Retinoic acid increases the cellular cholesterol predominantly in a mTOR-independent manner. Immunol Res. 2022; https://doi.org/10.1007/S12026-022-09292-X.

  162. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9. https://doi.org/10.1038/35036052.

    Article  CAS  Google Scholar 

  163. Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids. 2016;199:136–43. https://doi.org/10.1016/J.CHEMPHYSLIP.2016.05.003.

    Article  CAS  Google Scholar 

  164. Roy K, Mandloi S, Chakrabarti S, Roy S. Cholesterol corrects altered conformation of MHC-II protein in leishmania donovani infected macrophages: implication in therapy. PLoS Negl Trop Dis. 2016;10(5):1–23. https://doi.org/10.1371/journal.pntd.0004710.

    Article  CAS  Google Scholar 

  165. Ghosh J, Guha R, Das S, Roy S. Liposomal cholesterol delivery activates the macrophage innate immune arm to facilitate intracellular leishmania donovani killing. Infect Immun. 2014;82(2):607–17. https://doi.org/10.1128/IAI.00583-13.

    Article  CAS  Google Scholar 

  166. Prakash S, Rai AK. Retinoic acid increases cellular cholesterol in Leishmania donovani-infected macrophages in an mTOR-independent manner. Microbiol Spectr. 2022:e0269922. https://doi.org/10.1128/spectrum.02699-22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambak Kumar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, S., Rai, A.K. (2023). Intertwining of Retinoic Acid and Cholesterol Pathway and its Consequences in Leishmania donovani-Infected Macrophages. In: Mukherjee, B., Bhattacharya, A., Mukhopadhyay, R., Aguiar, B.G.A. (eds) Pathobiology of Parasitic Protozoa: Dynamics and Dimensions. Springer, Singapore. https://doi.org/10.1007/978-981-19-8225-5_2

Download citation

Publish with us

Policies and ethics